Bài 3: Một số phương trình lượng giác thường gặp

LN

giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)

a, \(sinx+cosx=\sqrt{2}sin5x\)

b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)

c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)

d, \(3sin^2x+\sqrt{3}sin2x=3\)

e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)

g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)

h, \(sin5x-cos5x=\sqrt{2}cos13x\)

i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)

NT
29 tháng 7 2019 lúc 19:20

\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)

Bình luận (0)
NT
29 tháng 7 2019 lúc 19:26

\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)

Nhiều quá @@ Tách ra đi ><

Bình luận (0)
NT
29 tháng 7 2019 lúc 19:35

\( d)3{\sin ^2}x + \sqrt 3 \sin 2x = 3\\ \Leftrightarrow 2{\sin ^2}x + 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - 3 = 0\\ *sinx = 0 \Rightarrow \text{không là nghiệm phương trình}\\ *sin \ne 0\\ 2 + 2\sqrt 3 \cot x - 3\left( {1 + {{\cot }^2}x} \right) = 0\\ \Leftrightarrow 3{\cot ^2}x - 2\sqrt 3 \cot x + 1 = 0\\ \Leftrightarrow \cot x = \dfrac{{\sqrt 3 }}{3} \Rightarrow x = \dfrac{\pi }{3} + k\pi \)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
LC
Xem chi tiết
JE
Xem chi tiết
HM
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết
HM
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết