Những câu hỏi liên quan
ND
Xem chi tiết
NL
29 tháng 8 2020 lúc 19:23

a/

\(cos^6x+sin^2x=1\)

\(\Leftrightarrow cos^6x-\left(1-sin^2x\right)=0\)

\(\Leftrightarrow cos^6x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(cos^4x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos^2x-1\right)\left(cos^2x+1\right)=0\)

\(\Leftrightarrow-cos^2x.sin^2x=0\)

\(\Leftrightarrow sin^22x=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
NL
29 tháng 8 2020 lúc 19:28

b/

\(cos^6x-sin^6x=\frac{13}{18}cos^22x\)

\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(cos^4x+sin^4x+sin^2x.cos^2x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left[\left(sin^2x+cos^2x\right)^2-sin^2x.cos^2x\right]=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(1-\frac{1}{4}sin^22x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(1-\frac{1}{4}\left(1-cos^22x\right)\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(\frac{3}{4}+\frac{1}{4}cos^22x\right)=\frac{13}{18}cos^22x\)

\(\Leftrightarrow cos2x\left(\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\frac{1}{4}cos^22x-\frac{13}{18}cos2x+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Bình luận (0)
NL
29 tháng 8 2020 lúc 19:32

c/

\(cos^4x+sin^6x=cos2x\)

\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)

\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)

Bình luận (0)
TY
Xem chi tiết
LH
5 tháng 7 2021 lúc 7:11

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

Bình luận (0)
H24
Xem chi tiết
NL
10 tháng 4 2021 lúc 23:31

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-8sin^6x+6sin^4x\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)

\(=sin^6x+3sin^4x.cos^2x+3cos^2x.sin^4x+cos^6x\)

\(=\left(sin^2x+cos^2x\right)^3=1\)

Bình luận (0)
LL
Xem chi tiết
NL
20 tháng 9 2020 lúc 18:23

a/

\(cos^4x-\left(1-2sin^2x\right)+2sin^6x=0\)

\(\Leftrightarrow\left(cos^2x+1\right)\left(cos^2x-1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow-sin^2x\left(cos^2x+1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x-cos^2x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x+sin^2x\right)=0\)

\(\Leftrightarrow sin^4x\left(2sin^2x+1\right)=0\)

\(\Leftrightarrow sinx=0\)

\(\Leftrightarrow x=k\pi\)

Bình luận (0)
NL
20 tháng 9 2020 lúc 18:28

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 9 2020 lúc 18:32

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

Bình luận (0)
TH
Xem chi tiết
AH
28 tháng 11 2019 lúc 0:21

\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)

\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)

là giá trị không phụ thuộc vào biến (đpcm)

-----------------------

\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)

\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)

\(=-\sin ^2x+\sin ^2x=0\)

là giá trị không phụ thuộc vào biến (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AH
28 tháng 11 2019 lúc 0:34

\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)

\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)

\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)

\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)

là giá trị không phụ thuộc vào biến $x$

--------------------

\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)

\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)

\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)

\(=1+\frac{2\sin ^2x}{\cos ^4x}\)

Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
H24
2 tháng 11 2023 lúc 17:55

d la sai

 

 

Bình luận (0)
EN
Xem chi tiết
NT
14 tháng 4 2020 lúc 14:56

\(3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)

\(=3\left(sin^2x-cos^2x\right)\left(sin^4x+cos^4x\right)+4\left(cos^2x-sin^2x\right)\left(cos^4x+sin^4x+cos^2x.sin^2x\right)4sin^6x+6sin^4x\)

\(=\left(cos^2x-sin^2x\right)\left(sin^4x+cos^4x+4sin^2xcos^2x\right)-4sin^6x+6sin^4x\)

\(=3cos^4xsin^2x-3cos^2xsin^4x+cos^6x+6sin^4x-5sin^6x\)

\(=3cos^4xsin^2x-3cos^2xsin^4x+cos^6x+sin^4x+5sin^4x\left(1-sin^2x\right)\)

\(=3cos^4xsin^2x+2sin^4xcos^2x+cos^6x+sin^4x\)

\(=cos^4x\left(3sin^2x+cos^2x\right)+sin^4x\left(2cos^2x+1\right)\)

\(=cos^4x\left(3-2cos^2x\right)+sin^4x\left(3-sin^2x\right)\)

\(=3\left(cos^4x+sin^4x\right)-2\left(cos^6x+sin^6x\right)\)

\(=3\left(cos^4x+sin^4x\right)-2\left(sin^4x+cos^4x-sin^2xcos^2x\right)\)

\(=\left(sin^2x+cos^2x\right)^2=1\)

Vậy biểu thức trên không phụ thuộc vào x

Bình luận (0)
ND
Xem chi tiết
NL
5 tháng 9 2020 lúc 19:58

a/

\(\Leftrightarrow\left(sin^2\frac{x}{3}+cos^2\frac{x}{3}\right)^2-2sin^2\frac{x}{3}.cos^2\frac{x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{2}sin^2\frac{2x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{4}\left(1-cos\frac{4x}{3}\right)=\frac{5}{8}\)

\(\Leftrightarrow cos\frac{4x}{3}=-\frac{1}{2}\)

\(\Leftrightarrow\frac{4x}{3}=\pm\frac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{2}+\frac{k3\pi}{2}\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:01

b/

\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x=-\frac{1}{2}\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:08

c/

\(\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow-cos^32x+5cos^22x-7cos2x+3=0\)

\(\Leftrightarrow\left(3-cos2x\right)\left(cos2x-1\right)^2=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

d/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos4x\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=cos4x\)

\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)=cos4x\)

\(\Leftrightarrow cos4x=1\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
HT
Xem chi tiết
TL
10 tháng 6 2021 lúc 14:44

`A=sin^4x+cos^4x+2sin^2x+cos^2x`

`=(sin^2x+cos^2x)^2-2sin^2xcos^2x+sin^2x+(sin^2x+cos^2x)`

`=1-1/2 sin^2 2x + sin^2 x+1`

`=2-1/2 sin^2 2x + sin^2x`

Bình luận (1)