Bài 3: Một số phương trình lượng giác thường gặp

LL

Nghiệm của phương trình : \(cos^4x-cos2x+2sin^6x=0\)

Tổng các nghiệm phương trình \(cos4x=cos^23x\) trong khoảng \(\left(-\pi;\pi\right)\)

Tìm m để phương trình \(cos2x-\left(2m+1\right)cosx+m+1=0\) có nghiệm \(x\in\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\)

NL
20 tháng 9 2020 lúc 18:23

a/

\(cos^4x-\left(1-2sin^2x\right)+2sin^6x=0\)

\(\Leftrightarrow\left(cos^2x+1\right)\left(cos^2x-1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow-sin^2x\left(cos^2x+1\right)+2sin^2x\left(sin^4x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x-cos^2x+1\right)=0\)

\(\Leftrightarrow sin^2x\left(2sin^4x+sin^2x\right)=0\)

\(\Leftrightarrow sin^4x\left(2sin^2x+1\right)=0\)

\(\Leftrightarrow sinx=0\)

\(\Leftrightarrow x=k\pi\)

Bình luận (0)
NL
20 tháng 9 2020 lúc 18:28

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 9 2020 lúc 18:32

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
KG
Xem chi tiết
HH
Xem chi tiết
LN
Xem chi tiết
NM
Xem chi tiết