Những câu hỏi liên quan
DB
Xem chi tiết
KL
22 tháng 9 2019 lúc 22:12
https://i.imgur.com/qYKcsE4.jpg
Bình luận (0)
H24
Xem chi tiết
NM
14 tháng 10 2021 lúc 17:43

\(A,VT=x^3+y^3+x^3-y^3=2x^3=VP\\ B,VT=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2+2xy+y^2-xy\right)\\ =\left(x-y\right)\left[\left(x+y\right)^2-xy\right]=VP\)

Sửa câu b \(cm:x^3-y^3=\left(x-y\right)\left[\left(x+y\right)^2-xy\right]\)

Bình luận (0)
DT
Xem chi tiết
NT
17 tháng 4 2021 lúc 21:34

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

Bình luận (0)
H24
Xem chi tiết
ND
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Bình luận (0)
PN
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 9 2019 lúc 9:41

thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải

Bình luận (0)
TL
24 tháng 9 2019 lúc 13:22

1/ Biến đổi vế trái , ta có :

(x-y)(x+y)= x2+xy - xy-y2= x2-y2

=> (x-y) (x+y) =x2-y2

2/ Biến đổi vế trái , ta có :

(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3

= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3

=> (x-y) (x2+xy+y2) =x3-y3

3/ / Biến đổi vế trái , ta có :

(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3

(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3

Bình luận (0)
ST
Xem chi tiết
NT
6 tháng 9 2023 lúc 20:53

g: (x+3y)(x-3y+2)

=(x+3y)(x-3y)+2(x+3y)

=x^2-9y^2+2x+6y

h: (x+2y)(x-2y+3)

=(x+2y)(x-2y)+3(x+2y)

=x^2-4y^2+3x+6y

i: (x^2-xy+y^2)(x+y)

=x^3+x^2y-x^2y-xy^2+xy^2+y^3

=x^3+y^3

j: (x+y)(x^2-xy+y^2)=x^3+y^3

k: (5x-2y)(x^2-xy-1)

=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y

=5x^3-5x^2y-5x-2x^2y+2xy^2+2y

=5x^3-7x^2y+2xy^2-5x+2y

l: (x^2y^2-xy+y)(x-y)

=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2

Bình luận (0)
KT
Xem chi tiết
XO
30 tháng 9 2020 lúc 16:19

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LD
30 tháng 9 2020 lúc 16:35

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 9 2020 lúc 16:54

a,\(x^3+y^3=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(VP=\left(x+y\right)\left[\left(x-y\right)^2+xy\right]\)

\(=\left(x+y\right)\left(x^2-2xy+y^2+xy\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3=VT\)

\(\Rightarrowđpcm\)

b,\(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x-y\right)^2\)

\(VT=x^3+y^3-xy\left(x+y\right)\)

\(=x^3+y^3-x^2y-xy^2\)

\(=\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)=VP\)

\(\Rightarrowđpcm\)

c,\(\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(VP=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

\(VT=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(\Rightarrow VP=VT\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
PK
30 tháng 9 2018 lúc 20:09

a)(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

=> Đt trên Đ

b) CM tương tự nha

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
VT
22 tháng 7 2023 lúc 8:46

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

Bình luận (0)