Những câu hỏi liên quan
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 7:32

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
XH
Xem chi tiết
H24
Xem chi tiết
AH
15 tháng 5 2021 lúc 13:19

Lời giải:

a) TXĐ: $x\in [-2;2]$

$y'=\frac{-x}{\sqrt{4-x^2}}=0\Leftrightarrow x=0$

Hàm số có điểm tới hạn $x=0$

Vẽ bảng biến thiên ta thu được hàm số đồng biến trên $(-2;0)$ và nghịch biến trên $(0;2)$

b) TXĐ: $x\in (-\infty;2]\cup [3;+\infty)$

$y'=\frac{2x-5}{2\sqrt{x^2-5x+6}}=0\Leftrightarrow x=\frac{5}{2}$ (loại vì không thuộc TXĐ)

Vẽ bảng biến thiên với các mốc $-\infty; 2;3;+\infty$ ta thấy hàm số đồng biến $(3;+\infty)$ và nghịch biến trên $(-\infty;2)$

Bình luận (0)
AV
Xem chi tiết
NT
22 tháng 7 2021 lúc 23:52

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

Bình luận (0)
TL
22 tháng 7 2021 lúc 10:55

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 5:53

ĐKXĐ: \(x^2-6x+5>=0\)

=>(x-1)(x-5)>=0

TH1: \(\left\{{}\begin{matrix}x-1>=0\\x-5>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=1\\x>=5\end{matrix}\right.\Leftrightarrow x>=5\)

TH2: \(\left\{{}\begin{matrix}x-1< =0\\x-5< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =1\\x< =5\end{matrix}\right.\)

=>x<=1

\(y=\sqrt{x^2-6x+5}\)

=>\(y'=\dfrac{\left(x^2-6x+5\right)'}{2\sqrt{x^2-6x+5}}\)

=>\(y'=\dfrac{2x-6}{2\sqrt{x^2-6x+5}}\)

Đặt y'>0

=>\(\dfrac{2x-6}{2\sqrt{x^2-6x+5}}>0\)

=>2x-6>0

=>x>3

kết hợp ĐKXĐ, ta được: x>5

Đặt y'<0

=>\(\dfrac{2x-6}{2\sqrt{x^2-6x+5}}< 0\)

=>2x-6<0

=>x<3

Kết hợp ĐKXĐ, ta được: x<1

Vậy: Hàm số nghịch biến trên (-\(\infty\);1) và đồng biến trên (5;+\(\infty\))

Bình luận (0)
LT
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 9 2016 lúc 22:06

a) D=R

* Nếu x1;x2 \(\in\) \(\left(-\infty;0\right)\); x1\(\ne\) x2

x1> x2 thì x12+2x1+3 <  x22+2x2+3

 <=>       \(\sqrt{x_1^2+2x_1+3}< \sqrt{x_2^2+2x_2+3}\)

<=>         \(f\left(x_1\right)< f\left(x_2\right)\)

Hàm số nghịch biến

Bình luận (0)
NL
Xem chi tiết