Những câu hỏi liên quan
NL
Xem chi tiết
NL
27 tháng 10 2020 lúc 22:55

1.

\(\Leftrightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)=5\)

Do \(\left\{{}\begin{matrix}sin2x\le1\\-4sin\left(x+\frac{\pi}{4}\right)\le4\end{matrix}\right.\) với mọi x

\(\Rightarrow sin2x-4sin\left(x+\frac{\pi}{4}\right)\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin2x=1\\sin\left(x+\frac{\pi}{4}\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3\pi}{4}+k2\pi\)

Bình luận (0)
NL
27 tháng 10 2020 lúc 23:01

2.

\(\Leftrightarrow1-2cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)

\(\Leftrightarrow-cos\left(\frac{\pi}{2}-x\right)+sinx\frac{x}{2}sinx-cosx\frac{x}{2}sin^2x=0\)

\(\Leftrightarrow-sinx+sin\frac{x}{2}sinx-cos\frac{x}{2}sin^2x=0\)

\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-cos\frac{x}{2}sinx\right)=0\)

\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2cos^2\frac{x}{2}sin\frac{x}{2}\right)=0\)

\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1-2sin\frac{x}{2}\left(1-sin^2\frac{x}{2}\right)\right)=0\)

\(\Leftrightarrow sinx\left(2sin^3\frac{x}{2}-sin\frac{x}{2}-1\right)=0\)

\(\Leftrightarrow sinx\left(sin\frac{x}{2}-1\right)\left(2sin^2\frac{x}{2}+2sin\frac{x}{2}+1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
24 tháng 7 2020 lúc 18:54

a/

\(\Leftrightarrow3\left(cos4x+1\right)+2cos^2x\left(1-4cos^4x\right)=0\)

\(\Leftrightarrow3\left(2cos^22x-1+1\right)+2cos^2x\left(1-2cos^2x\right)\left(1+2cos^2x\right)=0\)

\(\Leftrightarrow6cos^22x+\left(1+cos2x\right).\left(-cos2x\right)\left(2+cos2x\right)=0\)

Đặt \(cos2x=a\)

\(\Rightarrow6a^2-a\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a\left(-a^2+3a-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 18:58

b/

\(\Leftrightarrow4+3sinx+sin^3x=3\left(1-sin^2x\right)+\left(1-sin^2x\right)^3\)

Đặt \(sinx=a\) ta được:

\(a^3+3a+4=3-3a^2+\left(1-a\right)^3\)

\(\Leftrightarrow a^3+3a^2+3a+1=\left(1-a\right)^3\)

\(\Leftrightarrow\left(a+1\right)^3=\left(1-a\right)^3\)

\(\Leftrightarrow a+1=1-a\)

\(\Leftrightarrow a=0\)

\(\Rightarrow sinx=0\Rightarrow x=k\pi\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 19:04

c/

ĐKXĐ: ...

\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)

\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)

\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)

\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)

\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)

\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pi+k2\pi\)

Bình luận (0)
JE
Xem chi tiết
NL
27 tháng 8 2020 lúc 23:36

a/

\(\Leftrightarrow4sinx.cosx\left(sin^4x-cos^4x\right)=sin^24x\)

\(\Leftrightarrow2sin2x\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^24x\)

\(\Leftrightarrow-2sin2x.cos2x=sin^24x\)

\(\Leftrightarrow-sin4x=sin^24x\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\sin4x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\4x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:39

b/

\(\Leftrightarrow2\left(1-cosx\right)-\sqrt{3}cos2x=1+1+cos\left(2x-\frac{3\pi}{2}\right)\)

\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=sin\left(2\pi-2x\right)\)

\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)

\(\Leftrightarrow sin2x-\sqrt{3}cos2x=2cosx\)

\(\Leftrightarrow\frac{1}{2}sin2x-\sqrt{3}cos2x=cosx\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=cosx=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{2}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:42

c/

\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{5}{4}=0\)

\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{3}\right)-\frac{5}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\\sin\left(x+\frac{\pi}{3}\right)=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (0)
PA
Xem chi tiết
JE
Xem chi tiết
NL
23 tháng 9 2020 lúc 23:53

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)

b.

\(\sqrt{2}sin\left(\frac{\pi}{4}-2x\right)+\sqrt{2}sin\left(\frac{\pi}{4}+x\right)=1\)

\(\Leftrightarrow cos2x-sin2x+sinx+cosx=1\)

\(\Leftrightarrow1-2sin^2x-2sinx.cosx+sinx+cosx=1\)

\(\Leftrightarrow-2sinx\left(sinx+cosx\right)+sinx+cosx=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
24 tháng 7 2020 lúc 19:16

a/

\(\Leftrightarrow cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}sin\left(\frac{3x}{2}+\frac{\pi}{10}\right)\)

Đặt \(\frac{x}{2}+\frac{\pi}{5}=a\Rightarrow\frac{x}{2}=a-\frac{\pi}{5}\Rightarrow\frac{3x}{2}=3a-\frac{3\pi}{5}\)

Pt trở thành:

\(cosa=\frac{1}{2}sin\left(3a-\frac{3\pi}{5}+\frac{\pi}{10}\right)\)

\(\Leftrightarrow cosa=\frac{1}{2}sin\left(3a-\frac{\pi}{2}\right)\)

\(\Leftrightarrow cosa=-\frac{1}{2}sin\left(\frac{\pi}{2}-3a\right)=-\frac{1}{2}cos3a\)

\(\Leftrightarrow cos3a+2cosa=0\)

\(\Leftrightarrow4cos^3a-3cosa+2cosa=0\)

\(\Leftrightarrow4cos^3a-cosa=0\)

\(\Leftrightarrow cosa\left(4cos^2a-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosa=0\\cosa=\frac{1}{2}\\cosa=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=0\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}+\frac{\pi}{5}=\frac{\pi}{2}+k\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{\pi}{3}+k2\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\) (5 nghiệm bạn tự biến đổi)

Bình luận (0)
NL
24 tháng 7 2020 lúc 19:19

b/

ĐKXĐ: ...

Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)

Pt trở thành:

\(4\left(a^2-2\right)+4a=7\)

\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 19:25

c/

ĐKXĐ: ...

Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)

Pt trở thành:

\(9a+2\left(a^2-4\right)=1\)

\(\Leftrightarrow2a^2+9a-9=0\)

Pt này nghiệm xấu quá bạn :(

d/ĐKXĐ: ...

Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)

Pt trở thành:

\(2\left(a^2+4\right)+9a-1=0\)

\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
SP
Xem chi tiết
VT
19 tháng 9 2016 lúc 20:59

a, ta có 2x + π/3 = 3π/4 +k2π hoặc 2x + π/3 = -3π/4 + k2π

=> x= 5π/24 + kπ hoặc x= -13π/24 +kπ

b, đề sai phải ko

c,  cos22x - sin22x - 2sinx -1=0

<=> -2sin22x -2sin2x =0

<=> sin2x=0 hoặc sin2x=-1

<=> x=kπ hoặc x= π/2 + kπ ; x=-π/4 +kπ hoặc x=5π/8 + kπ

d, cos5xcosπ/4 - sin5xsinπ/4 = -1/2

   cos( 5x + π/4 ) = -1/2

   <=> x=π/12 +k2π/5 hoặc x= -11π/60 + k2π/5

f,4x+π/3=3π/10 -x +k2π  hoặc 4x+π/3 = x - 3π/10 +k2π

<=> x =-π/150 + k2π/5 hoặc x = π/90 +k2π/3

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
NL
7 tháng 5 2019 lúc 7:10

\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)

\(=sinx+cosx-cosx=sinx\)

\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)

\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)

Bình luận (2)