Những câu hỏi liên quan
NN
Xem chi tiết
NT
13 tháng 7 2022 lúc 21:01

1: \(\Leftrightarrow\sin^3x=-\cos^3x\)

\(\Leftrightarrow\sin^3x=-\sin^3\left(\dfrac{\Pi}{2}-x\right)\)

\(\Leftrightarrow\sin^3x=\sin^3\left(-\dfrac{\Pi}{2}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\Pi}{2}+x+k2\Pi\\x=\dfrac{\Pi}{2}-x+k2\Pi\end{matrix}\right.\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\)

2: \(\Leftrightarrow-\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x=0\)

\(\Leftrightarrow\sin x\cdot\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}\cdot\cos x=0\)

\(\Leftrightarrow\sin x\cdot\dfrac{\cos\Pi}{6}-\cos x\cdot\sin\left(\dfrac{\Pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(x-\dfrac{\Pi}{6}\right)=0\)

\(\Leftrightarrow x-\dfrac{\Pi}{6}=k\Pi\)

hay \(x=k\Pi+\dfrac{\Pi}{6}\)

Bình luận (0)
MN
Xem chi tiết
KN
Xem chi tiết
RH
14 tháng 9 2021 lúc 22:17

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

Bình luận (0)
RH
14 tháng 9 2021 lúc 22:24

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

Bình luận (0)
RH
14 tháng 9 2021 lúc 22:28

c) ĐKXĐ: x # kpi

Pt <=> tanx + 1/tanx + 2 = 0

--> tanx = -1

--> x = -pi/4 + kpi (k nguyên)

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2019 lúc 6:55

Đáp án D

Tìm điều kiện để phương trình có nghĩa. Sau đó sử dụng công thức 2 cos   2 x = 1 - 2 sin 2 x  để đưa phương trình đã cho về phương trình bậc 2 đối với sin x và giải phương trình này để tìm nghiệm. Bước cuối cùng là đối chiếu điều kiện để kết luận nghiệm.

Điều kiện

Với điều kiện trên phương trình đã cho trở thành

Nếu 

không thỏa mãn điều kiện (1)

Vậy 

Bình luận (0)
NL
Xem chi tiết
NL
24 tháng 7 2020 lúc 18:13

1/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(6tan^2x+6tanx+2=\frac{1}{cos^2x}\)

\(\Leftrightarrow6tan^2x+6tanx+2=1+tan^2x\)

\(\Leftrightarrow5tan^2x+6tanx+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{1}{5}\right)+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 18:16

b/

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow1-tanx-2tan^2x-\frac{1}{cos^2x}=0\)

\(\Leftrightarrow1-tanx-2tan^2x-1-tan^2x=0\)

\(\Leftrightarrow3tan^2x+tanx=0\)

\(\Leftrightarrow tanx\left(3tanx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=-\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(-\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

//Hoặc có thể giải như sau:

\(\Leftrightarrow1-sin^2x-sinx.cosx-2sin^2x-1=0\)

\(\Leftrightarrow3sin^2x+sinx.cosx=0\)

\(\Leftrightarrow sinx\left(3sinx+cosx\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
24 tháng 7 2020 lúc 18:18

c/

\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)

\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
NL
29 tháng 9 2020 lúc 15:15

\(sina+sinb+sinc+3=0\)

\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)

Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)

\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)

\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)

b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)

\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)

\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)

\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
Xem chi tiết
NL
11 tháng 3 2022 lúc 19:15

\(cosx=cos2.\left(\dfrac{x}{2}\right)=cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\)

\(sinx=sin2\left(\dfrac{x}{2}\right)=2sin\dfrac{x}{2}cos\dfrac{x}{2}\)

\(\Rightarrow\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 11 2017 lúc 11:47

Đáp án D
Dùng công thức cos a.cos b+ sin a. sin b= cos (a-b) để biến đổi phương trình không chứa α về dạng giống phương trình có chứa α
Ta có

 

Bình luận (0)