Tổng tất cả các giá trị của m để \(y=mx+3\) cắt \(y=x^2-4x+3\) tại A, B và \(S_{ABCD}=\frac{9}{2}\)
Tính tổng tất cả các giá trị m để đường thẳng \(\left(d\right):y=mx+3\) cắt parabol \(\left(P\right):y=x^2-4x+3\) tại 2 điểm A,B và \(S_{\Delta OAB}=\frac{9}{2}\)
Phương trình hoành độ giao điểm:
\(x^2-4x+3=mx+3\)
\(\Leftrightarrow x\left(x-m-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=m+4\end{matrix}\right.\)
Để (d) cắt (P) tại 2 điểm pb \(\Rightarrow m\ne-4\)
Ta được tọa độ 2 điểm \(A\left(0;3\right);B\left(m+4;m^2+4m+3\right)\)
\(\Rightarrow OA=3\)
Gọi H là chân đường cao hạ từ B xuống OA \(\Rightarrow BH=\left|x_B\right|=\left|m+3\right|\)
\(\Rightarrow\frac{1}{2}BH.OA=\frac{9}{2}\Rightarrow BH=3\Rightarrow\left|m+3\right|=3\Rightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Cho parabol (P): y = x 2 − 4x + 3 và đường thẳng d: y = mx + 3. Tìm tất cả các giá trị thực của mm để d cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 9 2 .
A. m = 7.
B. m = −7.
C. m = −1,m = −7.
D. m = −1
Tìm tất cả các giá trị thực của m để hai đường thẳng d: y = mx − 3 và △ : y + x = m cắt nhau tại một điểm nằm trên trục hoành.
A. m = 3
B. m = ± 3
C. m = - 3
D. m = 3
Cho parabol : \(y=x^2-4x+3\) và đường thẳng :\(y=mx+3\). Tìm tất cả các giá trị thực của m để đường thẳng cắt parabol tại 2 điểm phân biệt A và B sao cho SOAB=\(\frac{9}{2}\)
Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:
\(x^2-4x+3=mx+3\)
\(\Leftrightarrow x^2-(m+4)x=0\)
\(\Leftrightarrow x(x-m-4)=0(*)\)
Để 2 ĐTHS cắt nhau tại 2 điểm phân biệt $A,B$ thì pt phải có 2 nghiệm phân biệt
\(\Leftrightarrow m\neq -4\). Khi đó, PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_A=0\\ x_B=m+4\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} y_A=mx_A+3=3\\ y_B=mx_B+3=m^2+4m+3\end{matrix}\right.\)
\(\Rightarrow AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{(m^2+1)(m+4)^2}\)
\(d(O,AB)=d(O,(d):y= mx+3)=\frac{|m.0-0+3|}{\sqrt{m^2+1}}=\frac{3}{\sqrt{m^2+1}}\)
Như vậy:
\(S_{OAB}=\frac{d(O,AB).AB}{2}=\frac{9}{2}\)
\(\Leftrightarrow \frac{3}{\sqrt{m^2+1}}.\sqrt{(m^2+1)(m+4)^2}=9\)
\(\Leftrightarrow |m+4|=3\Rightarrow m=-1\) hoặc $m=-7$
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Gọi S là tập hợp tất các giá trị thực của tham số m để đường thẳng d : y = m x cắt parabol P : y = - x 2 + 2 x + 3 tại hai điểm phân biệt A và B sao cho trung điểm I của đoạn thẳng AB thuộc đường thẳng ∆ : y = x - 3 . Tính tổng tất cả các phần tử của S.
A. 2
B. 1
C. 5
D. 3
Phương trình hoành độ giao điểm: - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1
Dễ thấy (1) luôn có 2 nghiệm phân biệt vì a c = 1 . - 3 = - 3 < 0
Khi đó (d) cắt (P) tại hai điểm phân biệt A x 1 ; m x 1 , B x 2 ; m x 2 , với x 1 , x 2 là nghiệm phương trình (1). Theo Viét, có: x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3
I là trung điểm
A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2
Mà I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0
⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3
Đáp án cần chọn là: D
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=-mx\) cắt đồ thị của hàm số \(y=x^3-3x^2-m+2\) tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. \(m\in\left(-\infty;3\right)\)
B. \(m\in\left(-\infty;-1\right)\)
C. \(m\in\left(-\infty;+\infty\right)\)
D. \(m\in\left(1;+\infty\right)\)
Câu 1:Cho hàm số y= 4xmũ2 -4mx + mmũ2 – 2m . X xác định tất cả các giá trị của m để giá trị nhỏ nhất của hàm số trên đoạn [-2,0] bằng 3.
Câu 2: Cho parabol (P) : y= xmũ2 -4x =m (m là tham số) . Tìm tất cả các giá trị của m sao cho (P) cắt trục Ox tại điểm phân biệt A,B với OA = 3OB