Những câu hỏi liên quan
NK
Xem chi tiết
MA
Xem chi tiết
H24
16 tháng 6 2021 lúc 10:18

    1 + sinx + cosx + sin2x + cos2x = 0

<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0

<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0

<=> 2cosx ( cos x + sinx) + sinx + cosx = 0

<=> ( cosx + sinx ) (2 cos x + 1 ) = 0

<=> cosx + sinx = 0 hoặc 2cosx + 1 =0

 

Bình luận (0)
TN
Xem chi tiết
NL
18 tháng 10 2020 lúc 9:23

ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\)

\(\frac{1}{\frac{sinx}{cosx}+\frac{cos2x}{sin2x}}=\frac{\sqrt{2}\left(cosx-sinx\right)}{\frac{cosx}{sinx}-1}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cos2x.cosx+sin2x.sinx}=\frac{\sqrt{2}sinx\left(cosx-sinx\right)}{cosx-sinx}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cosx}=\sqrt{2}sinx\)

\(\Leftrightarrow2sinx.cosx=\sqrt{2}sinx\)

\(\Leftrightarrow cosx=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\left(l\right)\\x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

Vậy \(x=-\frac{\pi}{4}+k2\pi\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
NL
16 tháng 10 2019 lúc 19:19

Đề là \(tanx=cotx+\frac{1}{cosx}\) hay \(tanx=\frac{cotx+1}{cosx}\) bạn?

Bình luận (0)
NL
16 tháng 10 2019 lúc 21:09

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\frac{sinx}{cosx}=\frac{cosx}{sinx}+\frac{1}{cosx}\)

\(\Leftrightarrow sin^2x=cos^2x+sinx\)

\(\Leftrightarrow sin^2x=1-sin^2x+sinx\)

\(\Leftrightarrow2sin^2x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\left(l\right)\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
HP
31 tháng 5 2021 lúc 23:41

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

Bình luận (0)
HV
Xem chi tiết
H24
11 tháng 9 2016 lúc 23:41

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

Bình luận (0)