Những câu hỏi liên quan
DL
Xem chi tiết
BH
10 tháng 7 2018 lúc 14:23

Cái nè k cần làm nhé

Bình luận (0)
DL
Xem chi tiết
NT
20 tháng 7 2022 lúc 20:39

a: \(=-3xy^2z^3:\dfrac{3}{4}xyz=-3\cdot\dfrac{4}{3}\cdot\left(x:x\right)\cdot\left(y^2:y\right)\cdot\left(z^3:z\right)=-4yz^2\)

b: \(=\left(2:\dfrac{3}{4}\right)\cdot\dfrac{\left(x+y\right)^3}{\left(x+y\right)^2}=\dfrac{8}{3}\left(x+y\right)\)

c: \(=\left(x+y-z\right)^3\)

Bình luận (0)
LD
Xem chi tiết
NN
Xem chi tiết
DL
3 tháng 1 2018 lúc 22:17

dùng hệ số bất định ấy ,lười lắm

Bình luận (0)
NT
4 tháng 1 2018 lúc 23:05

p. tích thành tổng 2 bình phương rồi mincopxki

Bình luận (0)
NP
6 tháng 9 2021 lúc 20:34

Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)

                       \(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)

Một cách tương tự :

\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)

\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)

\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)

\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)

\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
EC
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Bình luận (0)
NT
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Bình luận (0)
EC
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
HK
Xem chi tiết
KO
1 tháng 1 2016 lúc 10:34

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

Bình luận (0)
TV
Xem chi tiết
BA
Xem chi tiết
TB
Xem chi tiết
NL
6 tháng 4 2022 lúc 6:58

(S) có tâm \(I\left(m-3;2m;-1\right)\)

Để I thuộc (P) \(\Rightarrow m-3+2m-2.\left(-1\right)-3=0\)

\(\Rightarrow3m-4=0\Rightarrow m=\dfrac{4}{3}\)

Bình luận (0)