cho a,b,c>0 và a+b+c=6 Tính Max A = \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)
cho a,b,c > 0. Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
cho a,b,c >0 và ab+bc+ca=3abc. Tìm GTLN của F=\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)
cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)
\("="\)khi a=b=c=....
hic :( tự đăng rồi tự giải ra luôn :((( sorry mn
cho các số dương a,b,c. chứng minh:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Bạn tham khảo:
Câu hỏi của 원회으Won Hoe Eu - Toán lớp 8 | Học trực tuyến
Hơi tắt 1 xíu ^.^
cho a;b;c là các số thực duong.CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Áp đụng bất đẳng thức Cauchy-Schwartz , ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự , ta có:
\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(a+b\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)
\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(b+c\right)+\left(b+a\right)+2b}\le\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
Cộng vế theo vế ta có :
\(\frac{ac}{c+3a+2b}+\frac{bc}{b+3c+2a}+\frac{ab}{a+3b+2c}\)
\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{b+c}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)\(=\frac{a+b+c}{6}\)
\(\RightarrowĐPCM\)
Cho a, b, c là các số thực dương. CMR:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}< \frac{a+b+c}{6}\)
\(P=\sum\frac{ab}{a+3b+2c}=\sum\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{a+b+c}{6}\)
Dấu "=" có xảy ra tại \(a=b=c\)
Cho a,b,c>0 và \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\). Tính \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
Chứng minh rằng với mọi a,b,c>0 ta có:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
a,b,c thuộc R+ . chứng minh rằng:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho a,b,c lớn hơn 0
CMR : \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)
Áp dụng bất đẳng thức Cauchy-Schwartz ta có
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right).\)
Tương tự ta có 2 bất đẳng thức khác nữa
\(\frac{bc}{b+3c+2a}=\frac{bc}{\left(b+a\right)+\left(a+c\right)+2c}\le\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{a+c}+\frac{1}{2c}\right).\)
\(\frac{ac}{c+3a+2b}=\frac{ac}{\left(a+b\right)+\left(b+a\right)+2a}\le\frac{ac}{9}\left(\frac{1}{c+b}+\frac{1}{b+a}+\frac{1}{2a}\right).\)
Cộng ba bất đẳng thức lại cho ta \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\)
\(\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)+\frac{bc}{9}\left(\frac{1}{b+a}+\frac{1}{a+c}+\frac{1}{2c}\right)+\frac{ac}{9}\left(\frac{1}{c+b}+\frac{1}{b+a}+\frac{1}{2a}\right)\)
\(=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{1}{9}\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\frac{1}{9}\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)+\frac{a}{18}+\frac{b}{18}+\frac{c}{18}\)
\(=\frac{a+b+c}{6}.\) (ĐPCM)