tìm các giá trị x\(\ge\)0 thỏa mãn bất phương trình
\(x^2-4x-6>\sqrt{x^3+3x^2+2x}\)
Tìm các giá trị nguyên của x đồng thời thỏa mãn 2 bất phương trình
10x-1/6 < 3x/2+1/5 (3) và 2x-21<11x +3 (4)
Cho phương trình \(x^2-3x+m=0\) (1) (x là ẩn).
Tìm các giá trị m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\).
\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)
\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)
\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)
\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)
\(\Rightarrow m=-3\) (thỏa mãn)
Pt trên có a=1, b=5, c=-3m+2
\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0 <=>m> 17/12
Theo hệ thức Viet, ta có:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)
=> 12m = -7 <=>m=-7/12 (thỏa đkxđ)
Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10
Giải các phương trình sau : 2 4x – 2 a) 2x - 3 = 5 b) (x + 2)(3x - 15) 0 z +1 I - 2 (x+ 1) (2 – 2) Câu 2: (2 điểm) số a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục 2x + 2 <2+ 3 b) Tìm x để giá trị của biểu thức 3x - 4 nhỏ hơn giá trị của biểu thức 5x - 6
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1
Ta có bất phương trình thứ nhất:
\(2x+1< x+3\)
\(\Leftrightarrow2x-x< 3-1\)
\(\Leftrightarrow x\cdot\left(2-1\right)< 2\)
\(\Leftrightarrow x< 2\) (1)
Bất phương trình thứ hai:
\(5x\ge x-16\)
\(\Leftrightarrow5x-x\ge-16\)
\(\Leftrightarrow4x\ge-16\)
\(\Leftrightarrow x\ge-4\) (2)
Từ (1) và (2) ta có:
\(-4\le x< 2\)
2x+1<x+3 và 5x>=x-16
=>2x-x<3-1 và 5x-x>=-16
=>x<2 và x>=-4
=>-4<=x<2
Giá trị x = 2 là nghiệm của bất phương trình nào trong các bất phương trình nào dưới đây ?
A. 3x + 3 > 9 |
B. - 5x > 4x + 1 |
C. x - 6 > 5 - x |
D. x - 2x < - 2x + 4 |
Giá trị x = 2 là nghiệm của bất phương trình nào trong các bất phương trình nào dưới đây ?
A. 3x + 3 > 9 |
B. - 5x > 4x + 1 |
C. x - 6 > 5 - x |
D. x - 2x < - 2x + 4 |
Tìm x thỏa mãn cả 2 bất phương trình
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\) và \(\frac{x}{2}+\frac{3-2x}{5}\ge\frac{3x-5}{6}\)
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Rightarrow\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}-\frac{15\left(3x+2\right)}{30}\ge0\)
\(\Rightarrow12x+30-20x-45x-30\ge0\)
\(\Rightarrow-53x\ge0\)\(\Leftrightarrow x\le0\)\(\left(1\right)\)
\(\frac{x}{2}+\frac{3-2x}{5}\ge\frac{3x-5}{6}\)
\(\Rightarrow\frac{15x}{30}+\frac{6\left(3-2x\right)}{30}-\frac{5\left(3x-5\right)}{30}\ge0\)
\(\Rightarrow15x+18-12x-15x+25\ge0\)
\(\Rightarrow-12x\ge-43\)\(\Rightarrow12x\le43\Leftrightarrow x\le\frac{43}{12}\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có tập nghiệm chung của cả hai phương trình là \(x\le0\)
1 giải các phương trình chứa dấu giá trị tuyệt đối sau
a ( 9+x)=2x
b ( x+6) = 2x+9
c ( 2x-3)= 2x-3
d ( 4+2x)= -4x
e ( 5 x)= 3x-2
g ( -2,5x)=x-12
h ( 5x ) -3x-2=0
i ( -2x) +x-5x-3=0
2 giải phương trình ( ẩn x): 4x2-25+k2+4kx=0
a giải phương trình với k=0
b giải phương trinh với k=--3
c tìm các giá trị của k để nhận phương trình nhận x =-2 làm nghiệm
3 giải bất phương trình trên trục số
a 3x-6<0
b 5x+15>0
c -4x+1>17
d x+10>0
goải giúp mình với mình đang cần gấp
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
3/ dễ làm mk làm một cau nha
a 3x-6<0
3x<6
3x/3<6/3
x<2
c -4x+1>17
-4x>17-1
-4x>16
-4x : (-4) < 16 : (-4)
x < 4 khi nhân , chia với số âm thì đổi chiều
bai 2 mk khong biet lm
Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)
a) Bình phương hai vế của phương trình để khử căn và giải phương trình bậc hai nhận được
b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không
a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)ta được:
\({x^2} - 3x + 2 = - {x^2} - 2x + 2\)(1)
Giải phương trình trên ta có:
\((1) \Leftrightarrow 2{x^2} - x = 0\)
\( \Leftrightarrow x(2x - 1) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)
b) Thử lại ta có:
Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng)
Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:
\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
Tìm các giá trị x thỏa mãn điều kiện của mỗi bất phương trình sau :
a. \(\dfrac{1}{x}< 1-\dfrac{1}{x+1}\)
b. \(\dfrac{1}{x^2-4}\le\dfrac{2x}{x^2-4x+3}\)
c. \(2\left|x\right|-1+\sqrt[3]{x-1}< \dfrac{2x}{x+1}\)
d. \(2\sqrt{1-x}>3x+\dfrac{1}{x+4}\)
a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.
b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.
c) ĐKXĐ: D = R\{- 1}.
d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].