Bài 18: Phương trình quy về phương trình bậc hai

QL

Cho phương trình \(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \)

a) Bình phương hai vế của phương trình để khử căn và giải phương trình bậc hai nhận được

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không

HM
30 tháng 9 2023 lúc 23:34

a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2}  = \sqrt { - {x^2} - 2x + 2} \)ta được:

\({x^2} - 3x + 2 =  - {x^2} - 2x + 2\)(1)

Giải phương trình trên ta có:

\((1) \Leftrightarrow 2{x^2} - x = 0\)

\( \Leftrightarrow x(2x - 1) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)

b) Thử lại ta có:

Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2}  = \sqrt { - {0^2} - 2.0 + 2}  \Leftrightarrow \sqrt 2  = \sqrt 2 \) (luôn đúng)

Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:

\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2}  = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2}  \Leftrightarrow \sqrt {\frac{3}{4}}  = \sqrt {\frac{3}{4}} \) (luôn đúng)

Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết