Những câu hỏi liên quan
MV
Xem chi tiết
NA
21 tháng 2 2023 lúc 13:44

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

Bình luận (2)
NA
21 tháng 2 2023 lúc 13:47

Bình luận (0)
NA
21 tháng 2 2023 lúc 13:48

https://www.youtube.com/watch?v=toNMfaR7_Ns

Bình luận (0)
AR
Xem chi tiết
AB
28 tháng 8 2021 lúc 9:32

hello

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
HD
3 tháng 4 2020 lúc 9:48

b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)

             \(=-m+1\)

để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)

c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)

             \(=m^2-m^2+6m+3m-18\)

                \(=9m-18\)

                \(=9\left(m-2\right)\)

     Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)

                                                                                               \(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)

Bình luận (0)
 Khách vãng lai đã xóa
DQ
3 tháng 4 2020 lúc 9:52

c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2

b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0

<=> m= 1

Bình luận (0)
 Khách vãng lai đã xóa
HB
Xem chi tiết
NT
25 tháng 8 2021 lúc 12:52

Đề sai rồi bạn

Bình luận (0)
DT
Xem chi tiết
TB
Xem chi tiết
KR
Xem chi tiết
HP
16 tháng 2 2021 lúc 17:48

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

Bình luận (0)
HP
16 tháng 2 2021 lúc 18:16

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)

Bình luận (0)
H24
Xem chi tiết
NT
1 tháng 2 2024 lúc 20:37

1: \(\Delta=2^2-4\cdot1\left(m-1\right)\)

\(=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)

=>\(\left(-2\right)^3-3\cdot\left(-2\right)\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)

=>\(-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)

=>\(4\left(m^2-m\right)=8\)

=>\(m^2-m=2\)

=>\(m^2-m-2=0\)

=>(m-2)(m+1)=0

=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

2: \(x_1^2+2x_2+2x_1x_2+20=0\)

=>\(x_1^2-x_2\left(x_1+x_2\right)+2x_1x_2+20=0\)

=>\(x_1^2-x_2^2+x_1x_2+20=0\)

=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)+m-1+20=0\)

=>\(-2\left(x_1-x_2\right)=-m-19\)

=>2(x1-x2)=m+19

=>\(x_1-x_2=\dfrac{1}{2}\left(m+19\right)\)

=>\(\left(x_1-x_2\right)^2=\dfrac{1}{4}\left(m+19\right)^2\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2=\dfrac{1}{4}\left(m+19\right)^2\)

=>\(\left(-2\right)^2-4\left(m-1\right)=\dfrac{1}{4}\left(m+19\right)^2\)

=>\(4-4m+4=\dfrac{1}{4}\left(m+19\right)^2\)

=>\(\left(m+19\right)^2=4\left(-4m+8\right)=-16m+32\)

=>\(m^2+38m+361+16m-32=0\)

=>\(m^2+54m+329=0\)

=>\(\left[{}\begin{matrix}m=-7\left(nhận\right)\\m=-47\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NC
29 tháng 12 2020 lúc 17:45

Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3 

Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)

(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3 

Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1 

t f(t) +∞ +∞ -∞ +∞ m -m - 1 2 3 y = 0 3 y = 0 8-6m 8-6m Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi 

8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)

Nếu m < 3, yêu cầu bài toán thỏa mãn khi 

8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))

Nếu m = 3 thì phương trình trở thành 

t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)

tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán 

Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)

Bình luận (0)
PQ
Xem chi tiết