Những câu hỏi liên quan
HN
Xem chi tiết
H24
16 tháng 2 2023 lúc 16:37

Bình luận (0)
DQ
Xem chi tiết
GN
Xem chi tiết
BT
Xem chi tiết
NN
4 tháng 4 2020 lúc 8:50

Vì DI = DB (gt) nên tam giác DIB cân tại D

Suy ra: \(\widehat{DIB}=\widehat{DBI}\) =>  \(\widehat{BAD}+\widehat{ABI}=\widehat{IBC}+\widehat{DBC}\)

Mà AD là phân giác góc BAC nên cung BD = cung CD

Ta có: BAD là góc nội tiếp chắn cung BD

           DBC là góc nội tiếp chắn cung CD

Do đó: \(\widehat{BAD}=\widehat{DBC}\Rightarrow\widehat{ABI}=\widehat{IBC}\)

=> BI là phân giác của góc ABC

Lại có: AI là phân giác góc BAC

Vậy I là tâm đường tròn nội tiếp tam giác ABC (Đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TQ
Xem chi tiết
H24
26 tháng 1 2016 lúc 10:44

Sorry! Mik mới hok lớp 6

Bình luận (0)
LH
Xem chi tiết
NT
14 tháng 4 2023 lúc 15:29

loading...

Bình luận (0)
TD
Xem chi tiết
NL
10 tháng 1 2022 lúc 18:32

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

Bình luận (0)
NL
10 tháng 1 2022 lúc 18:33

undefined

Bình luận (0)
AV
Xem chi tiết
AV
Xem chi tiết