Chương II - Đường tròn

TD

Cho tam giác ABC vuông tại A. Đường tròn tâm (I) nội tiếp tam giác ABC tiếp xúc với cạnh BC tại D. Chứng minh rằng: S\(\Delta ABC\) = BD.DC

NL
10 tháng 1 2022 lúc 18:32

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

Bình luận (0)
NL
10 tháng 1 2022 lúc 18:33

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QT
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
KS
Xem chi tiết
TB
Xem chi tiết