Những câu hỏi liên quan
H24
Xem chi tiết
H24
27 tháng 8 2021 lúc 21:43

có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)

Bình luận (0)
AT
Xem chi tiết
LS
Xem chi tiết
NT
5 tháng 12 2021 lúc 14:43

b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)

=1

Bình luận (0)
NL
5 tháng 12 2021 lúc 14:45

\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)

\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)

\(=2cos^2a\)

\(cos^6a+sin^6a+3sin^2a.cos^2a\)

\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)

\(=1\)

Bình luận (0)
PN
Xem chi tiết
H24
15 tháng 6 2020 lúc 17:08

Đề sai rồi bạn ơi, mình không biết các loại máy khác bấm như nào nhma mình dùng fx 580 thì mode B xét đúng/sai thì máy cho kết quả là biểu thức này sai nha :v

Bình luận (0)
JE
Xem chi tiết
NL
7 tháng 6 2020 lúc 18:18

\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)

\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 6 2020 lúc 15:00

\(\left(\frac{1}{cos2x}+1\right)tanx=\left(\frac{cos2x+1}{cos2x}\right).\frac{sinx}{cosx}=\frac{2cos^2x}{cos2x}.\frac{sinx}{cosx}\)

\(=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{cos7a+cosa+cos5a+cos3a}{sin7a+sina+sin5a+sin3a}=\frac{2cos4a.cos3a+2cos4a.cosa}{2sin4a.cos3a+2sin4a.cosa}\)

\(=\frac{cos4a\left(2cos3a+2cosa\right)}{sin4a\left(2cos3a+2cosa\right)}=\frac{cos4a}{sin4a}=cot4a\)

Bình luận (0)
MK
Xem chi tiết
MK
Xem chi tiết
NL
24 tháng 4 2019 lúc 15:44

Đề sai, nói mấy lần rồi bạn ko tin nhỉ? Bạn cho thử a một góc nào đó rồi bấm xem vế trái và vế phải có bằng nhau không?

Bình luận (1)
NH
Xem chi tiết
NL
25 tháng 5 2020 lúc 14:40

\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)

\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)

\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)

\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)

\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)

\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)

\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)

\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)

Bình luận (0)