6x2 – 12x – 7x + 14
Giải các phương trình sau 13 2 x + 7 x - 3 + 1 2 x + 7 = 6 x 2 - 9
ĐKXĐ: x ≠ −7/2/và x ≠ ± 3. Mẫu chung là: (2x + 7) (x + 3) (x − 3)
Khử mẫu ta được:
13(x + 3) + (x + 3)(x−3) = 6(2x + 7)
⇔ x 2 + x − 12 = 0
⇔ x 2 + 4x − 3x − 12 = 0
⇔x(x + 4) − 3(x + 4) = 0
⇔(x + 4)(x − 3) = 0
⇔x = −4 hoặc x = 3
Trong hai giá trị tìm được, chỉ có x = -4 là thỏa mãn ĐKXĐ. Vậy phương trình có một nghiệm duy nhất x = -4.
Trong các khai triển dưới đây, khai triển nào là đúng?
A. (x-2)3 = x3 - 6x2 +12x-8
B. (x-2)3 = x3 - 2x2 + 4x -8
C. (x-2)3 = 3x3 - 6x2 + 12x -24
D. (x-2)3 = x3 - 6x2 + 12x + 8
A. (x-2)3 = x3 - 6x2 +12x - 8 (hằng đẳng thức)
phân tích đa thức thành nhân tử
6x2 -12x-7x=14
\(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
Phân tích các đa thức sau thành nhân tử :
i/ x2+5x−6x2+5x−6
m/ 6x2−7x+26x2−7x+2
n/ 4x4+81
a: =(x+6)(x-1)
n: \(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)
x3-6x2+12x-9≤0
x3-6x2+12x-8=0
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 11 : rút gọn các biểu thức
a. ( 7x + 4 )2 - ( 7x + 4 ) ( 7x - 4 )
b. ( x + 2y)2 - 6xy ( x + 2y )
Bài 12 : Tính
a. (1/2x + 4)2
b. ( 7x - 5y )2
c. ( 6x2 + y2 ) ( y2 - 6x2 )
d . ( x + 2y )2
e. ( x - 3y ) ( x + 3y )
f. ( 5 - x )2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
\(11,\)
\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=\left(7x+4\right).8=56x+32\)
\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-6xy\right)\)
Bài `12`
`(1/2x+4)^2`
`=(1/2x)^2 + 2 . 1/2x.4 + 4^2`
`= 1/4 x^2 +4x + 16`
__
`(7x-5y)^2`
`=(7x)^2-2.7x.5y+(5y)^2`
`= 49x^2 - 70xy + 25y^2`
__
`(6x^2+y^2)(y^2-6x^2)`
`=(y^2+6x^2)(y^2-6x^2)`
`=(y^2)^2 - (6x^2)^2`
`=y^4-36x^4`
__
`(x+2y)^2`
`=x^2+ 2.x.2y+(2y)^2`
`= x^2 + 4xy +4y^2`
__
`(x-3y)(x+3y)`
`=x^2 - (3y)^2`
`=x^2 - 9y^2`
__
`(5-x)^2`
`=5^2 -2.5.x+x^2`
`=25 - 10x+x^2`
Bài `11`
`(7x+4)^2 -(7x+4)(7x-4)`
`= (7x+4)(7x+4) -(7x+4)(7x-4)`
`=(7x+4)(7x+4-7x+4)`
`=8(7x+4)`
`= 56x+32`
__
`(x+2y)^2-6xy (x+2y)`
`= (x+2y) (x+2y-6xy)`
Viết các biểu thức sau dưới dạng lập phương của tổng (hiệu).
a) x3-6x2+12x-8 b) 8-12x+6x2-x3
c)x3+x2+\(\dfrac{1}{3}\)x+\(\dfrac{1}{27}\) d) \(\dfrac{x^3}{8}\)+\(\dfrac{3}{4}\)x2y+\(\dfrac{3}{2}\)xy2+y3 e) (x-1)3-15.(x-1)2+75.(x-1)-125
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
8(x-3)3 + x3 = 6x2 - 12x +8
\(8.\left(x-3\right)^3+x^3=6x^2-12x+8\)
\(\Leftrightarrow\left(2x-6\right)^3=-x^3+6x^2-12x+8\)
\(\Leftrightarrow\left(2x-6\right)^3=\left(2-x\right)^3\)
\(\Leftrightarrow2x-6=2-x\)
\(\Leftrightarrow3x=8\)
\(\Leftrightarrow x=\dfrac{8}{3}\)
Vậy pt có nghiệm x = \(\dfrac{8}{3}\)
\(8\left(x-3\right)^3+x^3=6x^2-12x+8\)
\(< =>8\left(x^3-9x^2+27x-27\right)+x^3-6x^2+12x-8=0\)
\(< =>8x^3-72x^2+216x-216+x^3-6x^2+12x-8=0\)
\(< =>9x^3-78x^2+228x-224=0\)
\(< =>\left(3x-8\right)\left(3x^2-18x+28\right)=0\)
đến đây dễ rồi bạn tự làm