Cho a+b=x+y và a^2+b^2=x^2+y^2. Tính K= a^2020+b^2020-x^2020-y^2020+2020
1. Tìm a,b ∈ N
\(2^a-2^b=256\)
2.Tìm x,y ∈ Z
\(2020^x+2020^y=2020^{x+y}\)
\(1,\Rightarrow2^b\left(2^{a-b}-1\right)=256=2^8\left(a>b\right)\)
Do \(2^b\) chẵn, \(2^{a-b}-1\) lẻ, \(2^8\) chẵn nên \(2^{a-b}-1=1\Leftrightarrow2^{a-b}=2\Leftrightarrow a-b=1\)
\(\Leftrightarrow2^b\cdot1=2^8\Leftrightarrow b=8\Leftrightarrow a=9\)
Vậy \(\left(a;b\right)=\left(8;9\right)\)
Bài 1:
Từ đkđb hiển nhiên $a>b\Rightarrow a-b\geq 1$
$2^a-2^b=256$
$\Leftrightarrow 2^b(2^{a-b}-1)=256=2^8$
$\Leftrightarrow 2^{a-b}-1=2^{8-b}$
Với $a-b\geq 1$ thì $2^{a-b}$ chẵn, kéo theo $2^{a-b}-1$ lẻ
$\Rightarrow 2^{8-b}$ lẻ. Điều này xảy ra khi $8-b=0$
$\Leftrightarrow b=8$. Khi đó: $2^{a-b}-1=2^0=1$
$\Leftrightarrow 2^{a-b}=2=2^1\Leftrightarrow a-b=1$
$\Leftrightarrow a=b+1=9$
Vậy $(a,b)=(9,8)$
Bài 2: Không mất tổng quát giả sử $x\geq y$
$2020^x+2020^y=2020^{x+y}$
$\Leftrightarrow 2020^y(2020^{x-y}+1-2020^x)=0$
$\Leftrightarrow 2020^{x-y}+1-2020^x=0$
$\Rightarrow 2020^x=2020^{x-y}+1>1\Rightarrow x>0$
$\Rightarrow 2020^{x-y}+1\vdots 2020$
$\Rightarrow 2020^{x-y}\not\vdots 2020$
$\Rightarrow x-y=0$. Mà $2020^0+1=2\not\vdots 2020$ nên loại
Vậy không tồn tại $x,y$ thỏa mãn.
1. Cho \(x,y\) thỏa mãn \(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính \(x+y\)
2. Cho \(a,b\ne-2\) thỏa mãn \(\left(2a+1\right)\left(2b+1\right)=9\)
Tính \(A=\dfrac{1}{2+a}+\dfrac{1}{2+b}\)
Bài 1.
Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)
\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)
\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\) (1)
Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)
\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)
\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)
\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\) (2)
Cộng vế với vế của (1) và (2) ta có:
\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)
Bài 2:
Ta có: (2a+1)(2b+1)=9
nên \(2b+1=\dfrac{9}{2a+1}\)
\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)
\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)
\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)
Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)
\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)
\(=\dfrac{3+2a+1}{3a+6}\)
\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Bạn hãy dựa vào link này mà tự làm nhé :
https://olm.vn/hoi-dap/detail/246211413079.html
Bài làm của mình đó !
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
meo hieu haha
Cho x^2+y^2=1 và b.x^2=a.y^2.Chứng minh rằng x^2020/a^1010+y^2020/b^1010=2/(a+b)^1010
\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)
Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)
\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)
\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)
Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm
Cho x^2+y^2=1 và bx^2=ay^2.Chứng minh rằng x^2020/a^1010+y^2020/b^1010=2/(a+b)^1010
cho x,y >0 và 2020/x+1=2020/y và x+2y=2345.tính B=(2/3.x/y)2020+2019
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
1. Cho \(\left(x\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)
Tính S=x+y+2020
`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`
`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`
`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`
Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`
Cộng từng vế
`=>2(x+y)=0`
`<=>S=0+2020=2020`
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)
Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)
\(\Leftrightarrow-2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
\(S=x+y+2020=2020\)