Những câu hỏi liên quan
KA
Xem chi tiết
PT
31 tháng 8 2018 lúc 10:59

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
PT
31 tháng 8 2018 lúc 11:02

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
HT
Xem chi tiết
HT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NT
18 tháng 9 2020 lúc 19:58

\(\cdot\left(x+1\right)^2\ge0\)

\(\Rightarrow x^2+2x+1>0\)

\(\Rightarrow2x^2+4x+2\ge0\)

 \(\Rightarrow\left(3x^2+3x+3\right)-\left(x^2-x+1\right)\ge0\)

\(\Rightarrow3\left(x^2+x+1\right)\ge x^2-x+1\)

\(\Rightarrow\)\(\frac{x^2+x+1}{x^2-x+1}\ge\frac{1}{3}\) (1)

\(\cdot\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2x^2-4x+2\ge0\)

\(\Rightarrow\left(3x^2-3x+3\right)-\left(x^2+x+1\right)\ge0\)

\(\Rightarrow3\left(x^2-x+1\right)\ge x^2+x+1\)

\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}\le3\)(2)

Từ(1),(2) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
3 tháng 1 2020 lúc 18:21

Cảm thấy đề có gì đó sai sai ở cả tử và mẫu, bạn check lại thử.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LD
26 tháng 8 2020 lúc 15:08

a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+\left|x-3\right|\)

\(=x+3-\left(x-3\right)\)

\(=x+3-x+3\)

\(=6\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)

\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=\left|x+2\right|-\left|x\right|\)

\(=x+2-\left(-x\right)\)

\(=x+2+x\)

\(=2x+2=2\left(x+1\right)\)

c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)

\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)

\(=\frac{\left|x-1\right|}{x-1}\)

\(=\frac{x-1}{x-1}=1\)

d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)

\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)

\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)

\(=\left|x-2\right|-1\)

\(=-\left(x-2\right)-1\)

\(=-x+2-1\)

\(=-x+1=-\left(x-1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
D2
18 tháng 7 2019 lúc 7:49

Sai  bất đẳng thức giữa của  (1) rồi\(x+1>0\Leftrightarrow x>-1.\)

Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)

Bình luận (0)
LN
Xem chi tiết
NM
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bình luận (0)