Tìm m để phương trình
x2 -(m+1) x -m+1 =0 có 2 nghiệm âm phân biệt
Cho phương trình: x 2 + 2(2m + 1)x + 4 m 2 = 0. Tìm m để phương trình có hai nghiệm phân biệt âm
A. m < 1 4 m ≠ 0
B. m > - 1 4 m ≠ 0
C. m > - 1 4
D. m > - 1 2 m ≠ 0
2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm mang dấu gì ? a) x - 2mx + 5m - 4= 0 (1) b) ma + mr +3 0 (2) 3. Cho phương trình: (m + 1)x2 + 2(m + 4)x + m+1 = 0 Tìm m để phương trình có: a) Một nghiệm b) Hai nghiệm phân biệt cùng dấu c) Hai nghiệm âm phân biệt 4. Cho phương trình (m - 4)x2 – 2(m- 2)x + m-1 = 0 Tìm m để phương trình a) Có hai nghiệm trái dấu và nghiệm âm có GTTÐ lớn hơn b) Có 2 nghiệm trái dấu và bằng nhau về GTTÐ c) Có 2 nghiệm trái dấu d) Có nghiệm kép dương. e) Có một nghiệm bằng 0 và một nghiệm dương.
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình x2 - (m-1)x-2m-1=0 (1) (m là tham số)
a. Tìm m để phương trình (1) vô nghiệm, có nghiệm, có hai nghiệm phân biệt.
b. Tìm m để phương trình (1) có hai nghiệm phân biệt cùng dương.
c. Tìm m để phương trình (1) có hai nghiệm phân biệt x1 x2 thỏa mãn x12 +x22 =3
a:
\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)
\(=m^2-2m+1+8m+4=m^2+6m+5\)
Để (1) vô nghiệm thì (m+1)(m+5)<0
hay -5<m<-1
Để (1) có nghiệm thì (m+1)(m+5)>=0
=>m>=-1 hoặc m<=-5
Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0
=>m>-1 hoặc m<-5
b: Để (1) có hai nghiệm phân biệt cùng dương thì
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)
TH1: m=1
Phương trình sẽ trở thành:
\(\left(1-1\right)x^2+2\left(1-1\right)x-1=0\)
=>-1=0(vô lý)
=>Loại
TH2: m<>1
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot\left(m-1\right)\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\left(m-1\right)\)
\(=4m^2-8m+4+4m^2-4m\)
\(=8m^2-12m+4\)
\(=4\left(2m^2-3m+1\right)\)
\(=4\left(2m-1\right)\left(m-1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(4\left(2m-1\right)\left(m-1\right)>0\)
=>(2m-1)(m-1)>0
=>\(\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-1\right)}{m-1}=-2\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{m}{m-1}\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt cùng âm thì \(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2< 0\\x_1\cdot x_2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\-2=0\left(đúng\right)\\-\dfrac{m}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\)
=>\(0< m< \dfrac{1}{2}\)
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!
cho phương trình : x^2 - 2(m+1)x + m^2 +1=0 tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x1- x2= 1
Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2+1\right)\)
\(=\left(2m+2\right)^2-4\left(m^2+1\right)\)
\(=4m^2+8m+4-4m^2-4\)
=8m
Để phương trình có hai nghiệm phân biệt thì Δ>0
hay m>0
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+3\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+3}{2}\\x_2=\dfrac{2m+3-2}{2}=\dfrac{2m+1}{2}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=m^2+1\)
\(\Leftrightarrow\dfrac{\left(2m+3\right)\left(2m+1\right)}{4}=m^2+1\)
\(\Leftrightarrow4m^2+2m+6m+3=4m^2+4\)
\(\Leftrightarrow8m=1\)
hay \(m=\dfrac{1}{8}\left(nhận\right)\)
Cho phương trình:
(x2 - x - m)(x - 1) = 0 (1)
Tìm m để phương trình có đúng 2 nghiệm phân biệt.
Để phương trình (1) có đúng 2 nghiệm phân biệt thì phương trình \(x^2-x-m=0\) có đúng 1 nghiệm
\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-m\right)=4m+1\)
Để phương trình \(x^2-x-m=0\) có đúng 1 nghiệm thì Δ=0
\(\Leftrightarrow4m+1=0\)
\(\Leftrightarrow4m=-1\)
hay \(m=-\dfrac{1}{4}\)
Phương trình đã cho có hai nghiệm phân biệt khi
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)
Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)
\(\Leftrightarrow m^3-7m^2-2m+6=0\)
\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)