TH1: m=1
Phương trình sẽ trở thành:
\(\left(1-1\right)x^2+2\left(1-1\right)x-1=0\)
=>-1=0(vô lý)
=>Loại
TH2: m<>1
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot\left(m-1\right)\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\left(m-1\right)\)
\(=4m^2-8m+4+4m^2-4m\)
\(=8m^2-12m+4\)
\(=4\left(2m^2-3m+1\right)\)
\(=4\left(2m-1\right)\left(m-1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(4\left(2m-1\right)\left(m-1\right)>0\)
=>(2m-1)(m-1)>0
=>\(\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2\left(m-1\right)}{m-1}=-2\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{m}{m-1}\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt cùng âm thì \(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2< 0\\x_1\cdot x_2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\-2=0\left(đúng\right)\\-\dfrac{m}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\)
=>\(0< m< \dfrac{1}{2}\)