Những câu hỏi liên quan
YC
Xem chi tiết
TD
Xem chi tiết
QT
Xem chi tiết
VN
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:31

a: \(2x\left(x^2-3x+1\right)=2x^3-6x^2+2x\)

b: \(\left(x+2\right)^2-x^2=4x+4\)

c: \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=27\)

Bình luận (0)
NK
Xem chi tiết
NT
20 tháng 3 2020 lúc 14:54

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

Bình luận (0)
 Khách vãng lai đã xóa
NT
20 tháng 3 2020 lúc 15:02

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

Bình luận (0)
 Khách vãng lai đã xóa
NT
20 tháng 3 2020 lúc 15:21

Bài 2.

\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)

ĐK: \(x\ne\pm4\)

\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)

ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)

\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)

Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)

Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$

Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
4 tháng 7 2017 lúc 16:02

a, \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

b, \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(\Leftrightarrow-3x^2+15x+5x-5+3x^2=4-x\)

\(\Leftrightarrow21x=9\)

\(\Leftrightarrow x=\dfrac{3}{7}\)

Vậy...

c, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)

\(\Leftrightarrow-8x=-15\Leftrightarrow x=\dfrac{15}{8}\)

Vậy...

d, \(-\left(x+3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(\Leftrightarrow-x^2+x+12+x^2-1=10\)

\(\Leftrightarrow x=-1\)

Vậy...

e, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Leftrightarrow x^3-27+5x-x^3=6x\)

\(\Leftrightarrow x=-27\)

Vậy...

Bình luận (0)
HL
4 tháng 7 2017 lúc 16:03

a) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(4x^2-20x-7x^2+28x+3x^2-12=0\)

\(8x-12=0\)

\(4\left(2x-3\right)=0\)

\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)

b) \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(-3x^2+15x+5x-5+3x^2-4+x=0\)

\(21x-9=0\)

\(3\left(7x-3\right)=0\)

\(\Rightarrow7x-3=0\Rightarrow x=\dfrac{3}{7}\)

c) \(\left(x-5\right)\left(x-4\right)-\left(x-1\right)\left(x-2\right)=7\)

\(x^2-4x-5x+20-x^2+2x+x-2-7=0\)

\(-6x+11=0\Rightarrow x=\dfrac{11}{6}\)

d) \(-\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(-x^2+4x+3x-12+x^2-1-10=0\)

\(7x-23=0\)

\(x=\dfrac{23}{7}\)

e) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(x^3-27+5x-x^3-6x=0\)

\(-x-27=0\Rightarrow x=-27\)

Bình luận (0)
HK
4 tháng 7 2017 lúc 15:55

k biết đáp án của tớ có đúng k

Bình luận (0)
NH
Xem chi tiết
KR
12 tháng 7 2023 lúc 18:18

`@` `\text {Ans}`

`\downarrow`

`a)`

\(-5(x^2 - 3x +1 ) + x ( 1+5x ) =x-2 \)

`=> -5x^2 + 15x - 5 + x + 5x^2 = x - 2`

`=> (-5x^2 + 5x^2) + (15x + x) - 5 = x - 2`

`=> 16x - 5 = x - 2`

`=> 16x - 5 - x + 2 = 0`

`=> (16x - x) + (-5+2) = 0`

`=> 15x - 3 = 0`

`=> 15x = 3`

`=> x = 3 \div 15`

`=> x =`\(\dfrac{1}{5}\)

Vậy, `x =`\(\dfrac{1}{5}\)

`b)`

\(-4x (x-5) +7x (x-4) -3x^2 =12\)

`=> -4x^2 + 20x + 7x^2 - 28x - 3x^2 = 12`

`=> (-4x^2 - 3x^2 + 7x^2) + (20x - 28x) = 12`

`=> -8x = 12`

`=> x = 12 \div (-8)`

`=> x = `\(-\dfrac{3}{2}\)

Vậy, `x =`\(-\dfrac{3}{2}\)

`@` `\text {Kaizuu lv uu}`

Bình luận (0)
NH
Xem chi tiết
LD
Xem chi tiết
H24
26 tháng 3 2020 lúc 16:39

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

Bình luận (2)
 Khách vãng lai đã xóa
VB
Xem chi tiết
H9
14 tháng 4 2023 lúc 12:44

Bài 1: 

a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)

\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)

\(\Rightarrow16x-5=x-2\)

\(\Rightarrow16x-x=5-2\)

\(\Rightarrow15x=3\)

\(\Rightarrow x=\dfrac{15}{3}=5\)

b) \(12x^2-4x\left(3x+5\right)=10x-17\)

\(\Rightarrow12x^2-12x^2-20x=10x-17\)

\(\Rightarrow-20x=10x-17\)

\(\Rightarrow-20x-10x=-17\)

\(\Rightarrow-30x=-17\)

\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)

c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)

\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)

\(\Rightarrow-8x=12\)

\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)

Bài 2: 

a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)

\(=x^2-7x+5x-35-7x^2+21x\)

\(=-6x^2+19x-35\)

b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)

\(=x^3-x^2-2x-x^2+x-5x-5\)

\(=x^3-2x^2-6x-5\)

c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)

\(=x^2-7x-5x+35-x^2-3x+4x-12\)

\(=11x+23\)

d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)

\(=x^2-2x-x+2-x^2+2x+5x+10\)

\(=4x+12\)

Bình luận (0)