Giải các bpt sau
1) |7x-5|>_ 3
2) |9x-4|<2
1.giải các bpt sau
a.\(\left(x-3\right)\left(x+3\right)\ge x^2-7x+1\)
b.\(\dfrac{1,5-x}{5}\ge\dfrac{4x+5}{2}\)
2.giải các pt sau
\(x^3+1=x.\left(x+1\right)\)
Giải pt sau
a.(2x+3)(x-5)=4x2+6x
b.x/2x-6 - x/2x+2 = 2x/(x+1)(x-3)
c.giải bpt sau : 12x+1/12 ≤ 9x+1/3 - 8x+1/4
Giải các phương trình sau:
a) \(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
b) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
c) \(\sqrt{4x+20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
câu 1:giải các pt và bpt sau: a,17x - 5(x+3)= 2x + 5 b,3/x+2 - 5/x-2 = 11x + 23/(x+2)(x-2) c,5x + 7 ≥ 3(x-1) d,3x-1/x+1 = -2/5 e,(2x-1)(2x+1)= 4x2 + 3x + 2 f,x-3^3 -7+3x g,7x-5 < 2(4x-1)+7
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
câu 1:giải các pt và bpt sau:
a,17x - 5(x+3)= 2x + 5
b,3/x+2 - 5/x-2 = 11x + 23/(x+2)(x-2)
c,5x + 7 ≥ 3(x-1)
d,3x-1/x+1 = -2/5
e,(2x-1)(2x+1)= 4x2 + 3x + 2
f,x-3^3 -7+3x
g,7x-5 < 2(4x-1)+7
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
Bài 1 : Giải các pt sau :
c) |2x - 1| = x + 2
Bài 2 : giải các BPT sau :
a) 2( 3x - 1 ) < x + 4
b) 5 -2x/3 + x ≥ x/2 + 1
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
Giải các pt sau: a)\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) b)\(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)
\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)
\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)
\(\Leftrightarrow9x-\left|7x+5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)
\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)
\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)
\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)
\(\Leftrightarrow-5=21-8\sqrt{x+5}\)
\(\Leftrightarrow8\sqrt{x+5}=21+5\)
\(\Leftrightarrow8\sqrt{x+5}=26\)
\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)
\(\Leftrightarrow x+5=\dfrac{169}{16}\)
\(\Leftrightarrow x=\dfrac{169}{16}-5\)
\(\Leftrightarrow x=\dfrac{89}{16}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)
Giải các BPT sau
a) \(\dfrac{3-2x}{5}\)-\(\dfrac{4x+1}{3}\)<\(\dfrac{-2+x}{2}\)-\(\dfrac{1}{4}\)
b) (x+2)2-(5+x)2 < hoặc = -2(4x+5)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)