Giải phương trình
\(\left(-3x-5y\right)^2=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải hệ phương trình
\(\hept{\begin{cases}\left(x-y\right)^2\left(3x^2+2xy+3y^2-20\right)+1=0\\2x^2-5x-2xy+5y=0\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2x+5y=5\\3x-5y=-30\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}4x-3y=-5\\3x+2y=-8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}5x+4y=-3\\3x+2y=11\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x-4y=12\\5x+3y=17\end{matrix}\right.\)
e.
\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
f.
\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\2x-y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
d.
\(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\12x+4y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\17x=68\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3x-32}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Giải các hệ phương trình sau bằng phương pháp thế:
a)\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=11+2y\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\4\left(\dfrac{2}{3}y+\dfrac{11}{3}\right)-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\\dfrac{8}{3}y+\dfrac{44}{3}-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\-\dfrac{7}{3}y=3-\dfrac{44}{3}=-\dfrac{35}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5\\x=\dfrac{2}{3}\cdot5+\dfrac{11}{3}=\dfrac{10}{3}+\dfrac{11}{3}=\dfrac{21}{3}=7\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=3-10=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=3\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\3x+5\left(2x+8\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x+8\\3x+10x+40=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\13x=-39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=2\cdot\left(-3\right)+8=8-6=2\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y\\x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}y+y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{3}y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=\dfrac{2}{3}\cdot6=4\end{matrix}\right.\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
Câu 1: Giải phương trình và hệ phương trình sau:
a) \(x^4+3x^2-4=0\)
b) \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
Câu 2: Trên mặt phẳng tọa độ Oxy cho điểm T (-2; -2), (P) có phương trình \(y=-8x^2\) và đường thẳng d có phương trình y = - 2x - 6
a) Điểm T có thuộc đường thẳng d không ?
b) Xác định tọa độ giao điểm của đường thẳng d và (P)
Câu 1:
a) Ta có: \(x^4+3x^2-4=0\)
\(\Leftrightarrow x^4+4x^2-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
mà \(x^2+4>0\forall x\)
nên \(x^2-1=0\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
Vậy: S={1;-1}
Câu 1:
b) Ta có: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
Vậy: (x,y)=(1;2)
Câu 2:
a) Thay x=-2 vào (d), ta được:
\(y=-2\cdot\left(-2\right)-6=4-6=-2\)
Vậy: T(-2;-2) thuộc (d)
giải phương trình:
\(\left(x^2-3x-9\right)^2-\left(3x-17\right)^2=0\)
\(\Leftrightarrow\left(x^2-3x-9-3x+17\right)\left(x^2-3x-9+3x-17\right)=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2-26=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x^2=26\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x=\sqrt{26}\end{matrix}\right.\)
Vậy \(S=\left\{4;2;\sqrt{26}\right\}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
ĐKXĐ: ...
\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)
\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)
\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)
Thế xuống pt dưới:
\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)
\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)
Xét (1) với \(x\ge\dfrac{3}{2}\):
\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)
\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
giải hệ phương trình
\(\left\{{}\begin{matrix}x^{2^{ }}-5y+4=0\\y^2-5x+4=0\end{matrix}\right.\)
Trừ vế cho vế:
\(x^2-y^2+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-x-5\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^2-5x+4=0\\x^2-5\left(-x-5\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+4=0\\x^2+5x+29=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=4\Rightarrow y=4\end{matrix}\right.\)