tim các số hữu tỉ a,b sao cho \(2+\sqrt{5}\)
là nghiệm của pt x3 +ax2+bx+1
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Gọi \(x_1\) là nghiệm còn lại của pt đã cho
Theo Vi-ét, ta có
\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)
Thế pt dưới lên pt trên, ta được:
\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)
Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ
Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)
\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)
Vậy \(\left(a;b\right)=\left(1;-6\right)\)
Cho x=\(2+\sqrt{5}\).Tìm tất cả các số hữu tỉ a,b sao cho x là nghiệm của phương trình :\(x^3+ax^2+bx+c=0\)
Cho phương trình \(ax^2+bx+1=0\), với a,b là các số hữu tỉ. Tìm a,b biết x=\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
1) Cho PT: \(x^2+mx+n=0\left(1\right)\) với m,n thuộc Z
a) CMR: Nếu PT(1) có nghiệm hữu tỉ thì nghiệm đó nguyên
b) Tìm nghiệm hữu tỉ của PT (1) nếu n=3
2) CMR: Nếu số \(\overline{abc}\) nguyên tố thì PT: \(ax^2+bx+c=0\) không có nghiệm hữu tỉ
3)Tìm m thuộc Z để nghiệm của PT \(mx^2-2\left(m-1\right)x+m-4=0\)là số hữu tỉ
4) Tìm nghiệm x, y thuộc Q, x> y thỏa mãn
\(\sqrt{x}-\sqrt{y}=\sqrt{2-\sqrt{3}}\)
Cho P(x)=x3+ax2+bx-1
1) Xác định số hữu tỉ a và b để \(x=\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)là nghiệm của P(x)
2) Với giá trị a,b tìm được hãy tìm các nghiệm còn lại của P(x)
Bài 5: (1,0đ)
Cho hai đa thức sau:
f(x) = ( x-1)(x+2)
g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Để f (x) có nghiệm thì : f (x) = 0
=> (x−1)(x+2)=0
\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
⇒g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
@)
g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do 2a−b=3
⇒b=−3Vậy a = 0 ; b = −3