\(3.\left|2x^2-7\right|=33\)
\(120⋮x;48⋮x\) và \(-5< x< 10\)
CÁC BẠN GIÚP MÌNH GIẢI VỚI
AI TRẢ LỜI CHÍNH XÁC VÀ NHANH NHẤT MÌNH SẼ TICK CHO BẠN ĐÓ NHA
2. tìm x
a) \(\left(x-1\right)^3=8\)
b) \(7^{2x-6}=49\)
c) \(\left(2x-14\right)^7=128\)
d) \(x^4.x^5=5^3.5^6\)
e) \(\left[3.\left(x+2\right):7\right].4=120\)
a) \(\left(x-1\right)^3=8=2^3\)
\(x-1=2\)
\(x=2+1=3\)
b) \(7^{2x-6}=49=7^2\)
\(2x-6=2\)
\(2x=6+2=8\)
\(x=8:2=4\)
c) \(\left(2x-14\right)^7=128=2^7\)
\(2x-14=2\)
\(2x=14+2=16\)
\(x=16:2=8\)
d) \(x^4\cdot x^5=5^3\cdot5^6=5^4\cdot5^5\)
\(x=5\)
e) \(3\cdot\left(x+2\right):7\cdot4=120\)
\(x+2=120:3\cdot7:4\)
\(x+2=70\)
\(x=70-2=68\)
Lời giải:
a. $(x-1)^3=8=2^3$
$\Rightarrow x-1=2$
$\Rightarrow x=3$
b. $7^{2x-6}=49=7^2$
$\Rightarrow 2x-6=2$
$\Rightarrow 2x=8$
$\Rightarrow x=4$
c. $(2x-14)^7=128=2^7$
$\Rightarrow 2x-14=2$
$\Rightarrow 2x=16$
$\Rightarrow x=18$
d.
$x^4.x^5=5^3.5^6$
$x^9=5^9$
$\Rightarrow x=5$
e.
$3(x+2):7=120:4=30$
$3(x+2)=30.7=210$
$x+2=210:3=70$
$x=70-2=68$
tìm x
\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
len google di ban
mk chua hoc bai nay
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Tìm \(x\)
a) \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
a: \(\Leftrightarrow8x+16-5x^2-10x+4x^2-4x-8+2\left(x^2-4\right)=0\)
\(\Leftrightarrow-x^2-6x+8+2x^2-8=0\)
=>x^2-6x=0
=>x(x-6)=0
=>x=6 hoặc x=0
b: \(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1-33\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+34=0\)
=>\(10x^2-19x=0\)
=>x(10x-19)=0
=>x=0 hoặc x=19/10
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Tim x
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1-3x^2\right)=54\)
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
a)(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1-3x2)=54
\(\Rightarrow\)x3+9x2+27x+27-x(9x2+6x+1)+(2x+1)(x2-2x+1)=54
\(\Rightarrow\)x3+9x2+27x+27-9x3-6x2-x+2x3-4x2+2x+x2-2x+1=54
\(\Rightarrow\)-6x3+26x+28=54
\(\Rightarrow\)-6x3+26x=54-28
\(\Rightarrow\)-6x3+26x=26
\(\Rightarrow\)-6x3+26x-26=0
\(\Rightarrow\)-2(3x3+13x+14)
giải phương trình \(\left(2x^2+3x-1\right)^2-7\left(2x^2+3x+3\right)+33=0\)
Đặt \(t=2x^2+3x-1\), pt trở thành:
\(t^2-7\left(t+4\right)+33=0\)
\(\Leftrightarrow t^2-7t+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7+\sqrt{29}}{2}\\t=\dfrac{7-\sqrt{29}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=\dfrac{7+\sqrt{29}}{2}\\2x^2+3x-1=\dfrac{7-\sqrt{29}}{2}\end{matrix}\right.\)
Nghiệm xấu xuất sắc =]]
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
Tìm x:
a)\(2x\left(x-\frac{1}{7}\right)=0\)
b)\(\frac{1}{2}x+\frac{3}{5}x=\frac{-33}{25}\)
c)\(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0:2=0\\x=0+\frac{1}{7}=\frac{1}{7}\end{matrix}\right.\)
b) \(\frac{1}{2}x+\frac{3}{5}x=-\frac{33}{25}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{3}{5}\right)=-\frac{33}{25}\)
\(\Rightarrow x\frac{11}{10}=-\frac{33}{25}\)
\(\Rightarrow x=\left(-\frac{33}{25}\right):\frac{11}{10}=-\frac{33}{25}.\frac{10}{11}=-\frac{6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=0+\frac{4}{9}=\frac{4}{9}\\-\frac{3}{7}:x=0-\frac{1}{2}=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4}{9}.\frac{3}{2}=\frac{2}{3}\\x=\left(-\frac{3}{7}\right):\frac{-1}{2}=\left(-\frac{3}{7}\right).\left(-2\right)=\frac{6}{7}\end{matrix}\right.\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=0;x=\frac{1}{7}\)
b) \(\frac{1}{2}x+\frac{3}{5}x=\frac{-33}{25}\\ \left(\frac{1}{2}+\frac{3}{5}\right)x=\frac{-33}{25}\\ \left(\frac{5}{10}+\frac{6}{10}\right)x=\frac{-33}{25}\\ \frac{11}{10}x=\frac{-33}{25}\\ x=\frac{-33}{25}:\frac{11}{10}\\ x=\frac{-33.10}{25.11}\\ x=\frac{-6}{5}\)
Vậy x = \(\frac{-6}{5}\)
c) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\\ \Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}+\frac{-3}{7}:x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{4}{9}\\\frac{-3}{7}:x=\frac{-1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{9}:\frac{2}{3}=\frac{4.3}{9.2}=\frac{2}{3}\\x=\frac{-3}{7}:\frac{-1}{2}=\frac{-3.2}{7.\left(-1\right)}=\frac{6}{7}\end{matrix}\right.\)