chứng minh biểu thức T=1/4^2+1/5^2+1/6^2+...........+1/99^2+1/100^2 ko phải là một stn
Câu 5: Chứng minh rằng giá trị biểu thức T= 1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 không phải là một số tự nhiên.
ta thấy : \(T=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}\) và T > 0
mà \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
=> \(0< T< \frac{97}{300}\)
Chứng tỏ tổng T không phải là một số tự nhiên ! ...
Chứng minh rằng biểu thức sau đây có giá trị không phải là một số tự nhiên.
\(A=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
Ta có : \(\frac{1}{4.5}< \frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5.6}< \frac{1}{5^2}< \frac{1}{4.5}\)
.......
\(\frac{1}{99.100}< \frac{1}{99^2}< \frac{1}{98.99}\)
\(\frac{1}{101.100}< \frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}+\frac{1}{101.100}< A< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\frac{1}{4}-\frac{1}{101}< A< \frac{1}{3}-\frac{1}{100}\Rightarrow\frac{97}{404}< A< \frac{97}{300}\)
=> A không phải là số tự nhiên ( đpcm )
chứng minh rằng: giá trị biểu thức T=1/4^2+1/5^2+1/6^2+....+1/100^2 không phải là 1 số tự nhiên
Cho biểu thức A = 1/ 1×2 + 1/ 3×4 + 1/ 5×6 + ......... + 1/ 99×100. Chứng minh rằng: 7/12 < A < 5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm
1/2^2 + 1/3² + 1/4² ++ 1/99 mũ 2 + 1/100 mũ 2 chứng minh rằng biểu thức đó nhỏ hơn 3/4
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$
$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$
$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$
$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
Bài 1:
Cho s=1+2+2^2+2^3+...+2^9.chứng minh rằng s nhỏ hơn 5×2^8
Bài2 :
Cho biểu thức b=2018+2018^2+2018^3+....+2018^100.chứng minh b chia hết cho 2019
Bài 3:
Cho biểu thức a=1+2+2^2+2^3+...+2^48+2^49.tìm số tự nhiên x.biết a+1=2^n-1
Bài 4:
Tìm số tự nhiên x biết :
1+2+2^2+2^3+....+2^x=128
Bai5 :
Cho biểu thức b=3+3^2^3^3+...+3^99+3^100.tìm x biết 2×b+3=3^x
Bài 6:
Cho biểu thức a=4+2^3+2^4+2^5+....+2^2003+2^2004.chứng minh rằng a là một lũy thừa của 2
Giúp mik với mik đang cần gấp
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé
a) thu gọn biểu thức sau: a= 5 - 5^2 + 5^3 - 5^4 +...- 5^98 + %^99
b) chứng minh rằng với mọi n thuộc N thì (2^n+1).(2^n+2) đều chia hết cho 3
c) chúng minh: A= 1/1^2 + 1/2^2+ 1/3^2+.....+1/99^2+ 1/100^2 < 1 3/4 (hỗn số)
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)