Ta có : \(\frac{1}{4^2}>\frac{1}{4.5}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow T>\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(T>\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(T>\frac{1}{4}-\frac{1}{101}=\frac{97}{404}>0\) (1)
Ta lại có : \(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow T< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(T< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(T< \frac{1}{3}-\frac{1}{100}=\frac{97}{300}< 1\) (2)
Từ (1), (2)
\(\Rightarrow T\notinℕ\)
Vậy \(T\notinℕ\).
Bổ sung dòng thứ 3 đếm từ dưới lên : \(\Rightarrow0< T< 1\)