So sánh 2\(\sqrt{3}\) - 1 và 3
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
Bài 3: So sánh:
1) -3 và -5\(+\sqrt{5}\)
2)\(-4\) và \(-2\sqrt{5}\)
3) \(-3\sqrt{5}\)và -6
hộ mk nhé :>
\(1.-3< -5+\sqrt{5}\)
\(2.-4>-2\sqrt{5}\)
\(3.-3\sqrt{5}< -6\)
2) \(4=\sqrt{16}\)
\(2\sqrt{5}=\sqrt{20}\)
mà 16<20
nên \(-4>-2\sqrt{5}\)
3) \(3\sqrt{5}=\sqrt{45}\)
\(6=\sqrt{36}\)
mà 45>36
nên \(-3\sqrt{5}< -6\)
1)Ta có \(-3=-\sqrt{9}>-5+\sqrt{5}\)
2)Ta có \(-2\sqrt{5}=(-\sqrt{20})<-4=(-\sqrt{16})\)
3)Ta có \(-3\sqrt{5}=(-\sqrt{45})<-6=-\sqrt{36}\)
Không dùng máy tính so sánh P và Q biết \(P=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\sqrt{\left(\sqrt{3}-1\right)^2}\) và Q=\(\dfrac{1}{\sqrt{2}-1}\)
\(P=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
\(Q=\dfrac{1}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1\)
Do \(2< \sqrt{2}+1\)
=> P < Q
so sánh các cặp số sau:
a) 2 và 1 + \(\sqrt{2}\)
b) 1 và \(\sqrt{3}-1\)
c) 10 và \(2\sqrt{31}\)
d) -12 và -3\(\sqrt{11}\)
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
so sánh 2 số sau :
\(5 - \sqrt{5] và \sqrt{3} và 1\)
So sánh M = \(\sqrt{2+\sqrt{5}}\) và N = \(\dfrac{\sqrt{5}+1}{\sqrt{3}}\)
so sánh
\(\sqrt{3\sqrt{3}}\) và \(\sqrt{3}+1\)
\(\sqrt{3\sqrt{3}}=\sqrt{3.\sqrt{\dfrac{432}{144}}}< \sqrt{3\sqrt{\dfrac{625}{144}}}=\sqrt{3.\dfrac{25}{12}}=\dfrac{5}{2}\)
\(\sqrt{3}+1=\sqrt{\dfrac{12}{4}}+1>\sqrt{\dfrac{9}{4}}+1=\dfrac{3}{2}+1=\dfrac{5}{2}\)
\(\Rightarrow\sqrt{3}+1>\sqrt{3\sqrt{3}}\)