\(48x^2-22x+3=0\)
PTDT thành nhân tử
1) (48x2+8x-1)(3x2+5x-2)-4
2) (12x-1)(6x-1)(4x-1)(3x-1)-330
3) 4(x2+11x+30)(x2+22x+120)
4) x(x+4)(x+6)(x+10)+128
\(3x^3-48x=0\)
\(3x^3-48x=0\)
\(3x^3-48x=0\)
\(3x\cdot\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\left\{\pm4\right\}\end{cases}}\)
Vậy,............
a)\(\sin^22x+\sqrt{3}\sin4x+3\cos^22x=0\)
b)\(\sqrt{2}\left(\sin x+\cos x\right)=\tan x+\cot x\)
b.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\sqrt{2}\left(sinx+cosx\right)=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)
\(\Leftrightarrow\sqrt{2}\left(sinx+cosx\right)=\dfrac{1}{sinx.cosx}\)
Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(sinx.cosx=\dfrac{t^2-1}{2}\)
Pt trở thành:
\(\sqrt{2}t=\dfrac{2}{t^2-1}\Rightarrow t^3-t-\sqrt{2}=0\)
\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t^2+\sqrt{2}t+1\right)=0\)
\(\Leftrightarrow t=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\)
a.
\(\Leftrightarrow sin^22x+cos^22x+\sqrt{3}sin4x+1+cos4x=0\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-2\)
\(\Leftrightarrow\dfrac{1}{2}cos4x+\dfrac{\sqrt{3}}{2}sin4x=-1\)
\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{3}\right)=-1\)
\(\Leftrightarrow4x-\dfrac{\pi}{3}=\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\)
Phan tich đa thức thành nhân tử:
a, P(x)=(48x2+8x-1) (3x2+5x+2)-4
b, Q(x)=(12x-1) (6x-1) (4x-1) (3x-1) -330|
c, M(x)=4 (x2+11x+30) (x2+22x+120)-3x2
\(2x^3-22x^2+36x=0\)
=>2x(x^2-11x+18)=0
=>x(x-2)(x-9)=0
=>\(x\in\left\{0;2;9\right\}\)
Giải các phương trình sau:
1) \(2\cos4x-3=0\)
2) \(cos5x+2=0\)
3) \(cos2x+0,7=0\)
4) \(cos^22x-\dfrac{1}{4}=0\)
1.
\(2cos4x-3=0\)
\(\Leftrightarrow cos4x=\dfrac{3}{2}\)
Mà \(cos4x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
2.
\(cos5x+2=0\)
\(\Leftrightarrow cos5x=-2\)
Mà \(cos5x\in\left[-1;1\right]\)
\(\Rightarrow\) phương trình vô nghiệm.
3.
\(cos2x+0,7=0\)
\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)
\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)
4.
\(cos^22x-\dfrac{1}{4}=0\)
\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
16x2+22x-3=0
pt <=> (16x^2-24x)+(2x-3) = 0
<=> (2x-3).(8x+1) = 0
<=> 2x-3=0 hoặc 8x+1=0
<=> x=3/2 hoặc x=-1/8
Vậy ..............
Theo bài ra ta có:\(16.x^2+22x-3=0\)
\(\Rightarrow\left(16x+22\right)x=3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Tự kẻ bẳng nha
\(16x^2+22x-3=0\)
\(\Leftrightarrow16x\left(x-\frac{1}{8}\right)+24\left(x-\frac{1}{8}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{8}\right)\left(16x+24\right)=0\)
\(\Leftrightarrow8\left(x-\frac{1}{8}\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{8}=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=-\frac{3}{2}\end{cases}}}\)
tìm x
3x^3 - 48x = 0
x^3 + x^2 - 4x = 4
\(\text{1) }3x^3-48x=0\\ \Leftrightarrow x\left(3x^2-48\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2-48=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2=48\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\\ \text{Vậy }x=0\text{ hoặc }x=\pm4\)
\(\text{2) }x^3+x^2-4x=4\\ \Leftrightarrow x^3+x^2-4x-4=0\\ \Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\\ \Leftrightarrow\left(x^2-4\right)\left(x+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\\ \text{Vậy }x=2\text{ hoặc }x=-2\text{ hoặc }x=1\)
1) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x^2-4^2\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy x=0 ; x=4 ; x=-4
b) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy x=-1 ; x=2 ; x=-2
Tìm x, biết :
a, x^3+3x^2+2 = 0
b, x^3-12x^2+48x-72 = 0
Giúp mk vs ạ
a, Thắc mắc đề cóa sai khong .
( đáp án vẫn có nhưng là số vô tỉ nên nghe lạ á )
b, Ta có : \(x^3-12x^2+48x-72=0\)
=> \(x^3-3.x^2.4+3.x.4^2-64-8=0\)
=> \(\left(x-4\right)^3-8=0\)
=> \(\sqrt[3]{\left(x-4\right)^3}=\sqrt[3]{8}=2\)
=> \(x=6\)
Vậy ....