Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 1 2019 lúc 5:08

Hướng dẫn giải:

Thay x = -1 vào phương trình

Ta được VT= (-1 + 1)(-1 – 2)(-1 + 5) = 0.(-3).4 = 0= VP

Vậy x = -1 là nghiệm của phương trình đã cho.

Bình luận (0)
P2
Xem chi tiết
NT
4 tháng 2 2022 lúc 21:05

Câu 3: C

Câu 4: A
Câu 5: C

Câu 6: m=3

Câu 7: B

Câu 8: D

Câu 9: D

Câu 10: C

Bình luận (0)
DH
Xem chi tiết
NT
16 tháng 1 2023 lúc 22:16

(x-3)(1-x)=3-x

=>(x-3)(1-x)=-(x-3)

=>(x-3)(1-x+1)=0

=>(x-3)(2-x)=0

=>x=2 hoặc x=3

=>x=2 là nghiệm của pt

Bình luận (1)
NT
Xem chi tiết
H24
24 tháng 1 2019 lúc 23:29

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

Bình luận (0)
H24
25 tháng 1 2019 lúc 23:28

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3

Bình luận (0)
QT
Xem chi tiết
NL
7 tháng 2 2021 lúc 13:09

- Thay lần lượt xo vào từng phương trình trên ta được kết quả sau :

 +, Phương trình nhận xo là nghiệm : a, b, c, d, e .

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 7 2018 lúc 16:34

Hướng dẫn giải:

Thay Cách chứng minh một số là nghiệm của một phương trình cực hay, có đáp án | Toán lớp 8 vào 2 vế của phương trình

Ta được:

Cách chứng minh một số là nghiệm của một phương trình cực hay, có đáp án | Toán lớp 8

⇒ VT ≠ VP

Vậy Cách chứng minh một số là nghiệm của một phương trình cực hay, có đáp án | Toán lớp 8 không là nghiệm của phương trình đã cho.

Bình luận (0)
PD
Xem chi tiết
CT
26 tháng 3 2019 lúc 21:29

1.a

ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)

 = m^2-m^2+1=1>0

vậy pt luôn có 2 no vs mọi m

Bình luận (0)
BH
26 tháng 3 2019 lúc 21:58

a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)

Vậy pt luôn có 2 nghiệm với mọi m

b)

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)

vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)

c)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)

\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)

Bình luận (0)
H24
Xem chi tiết
LC
1 tháng 4 2019 lúc 22:54

lớp 7 mà đề khó v

Bình luận (0)
NH
1 tháng 4 2019 lúc 22:55

Khó lắm , lớp 7 khó thế

Bình luận (0)
DP
1 tháng 4 2019 lúc 22:55

Bài này lớp 11 mới đúng -,- nhưng dùng kiến thức lớp 7 để làm thôi

Bình luận (0)
P2
Xem chi tiết
NT
5 tháng 2 2022 lúc 21:09

Câu 10: B

Câu 9: C

Câu 8: A

Câu 7: A

Câu 6: C

Câu 5:D

Câu 4: A

Câu 3: B

Câu 2: A

Câu 1; B

Bình luận (0)