\(lim_{x\rightarrow2^-}\frac{\left|x-2\right|}{x-2}\)
\(lim_{x\rightarrow2^-}\frac{x^2-4}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}\)
\(=\lim\limits_{x\rightarrow2^-}\frac{-\left(x+2\right)\sqrt{\left(2-x\right)^2}}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}=\lim\limits_{x\rightarrow2^-}\frac{-\left(x+2\right)\sqrt{2-x}}{\sqrt{x^2+1}}=\frac{0}{\sqrt{5}}=0\)
\(lim_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}\)
\(\lim\limits_{x\rightarrow2}\dfrac{\left(3x-5\right)}{\left(x-2\right)^2}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2}3x-5=3\cdot2-5=1>0\\\left(x-2\right)^2>0\\\lim\limits_{x\rightarrow2}\left(x-2\right)^2=\left(2-2\right)^2=0\end{matrix}\right.\)
\(lim_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)
\(\lim\limits_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)
\(=\lim\limits_{x\rightarrow2^-}\dfrac{x+2-1}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2^-}\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^-}\dfrac{x+1}{x+2}=\dfrac{2+1}{2+2}=\dfrac{3}{4}>0\\x-2< 0\end{matrix}\right.\)
\(lim_{x\rightarrow2}\frac{\left(\sqrt{x^2+6}-2x\right)\left(\sqrt{4x+1}+x\sqrt[3]{x-1}-x^2-1\right)}{x^2-4x+4}\)
cao nhân nào đó giúp với , xin cảm ơn nhiều !
\(lim_{x\rightarrow2^+}\frac{3}{x-2}\sqrt{\frac{x+4}{4-x}}\)
\(=\frac{3\sqrt{3}}{0^+}=+\infty\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
\(lim_{x->1}\frac{\sqrt[3]{6x-5}-\sqrt{4x-3}}{\left(x-1\right)^2}\)
l\(lim_{x->0}\left(1-x\right)tan\frac{\pi x}{2}\)
Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi
\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)
giai cau duoi thoi nha
tìm a,b sao cho
\(\lim_{x\rightarrow2}\dfrac{x^{2}+2ax-b}{x^{2}-4}=4\)
Giới hạn đã cho hữu hạn nên \(x^2+2ax-b=0\) có nghiệm \(x=2\)
\(\Rightarrow4+4a-b=0\Rightarrow b=4a+4\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{x^2+2ax-4a-4}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2a+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+2a+2}{x+2}=\dfrac{2a+4}{4}=4\)
\(\Rightarrow a=6\Rightarrow b=28\)