Giới hạn đã cho hữu hạn nên \(x^2+2ax-b=0\) có nghiệm \(x=2\)
\(\Rightarrow4+4a-b=0\Rightarrow b=4a+4\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{x^2+2ax-4a-4}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2a+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{x+2a+2}{x+2}=\dfrac{2a+4}{4}=4\)
\(\Rightarrow a=6\Rightarrow b=28\)
Đúng 4
Bình luận (1)