Giải và biện luận PT với a,b,m là tham số
a2x-ab=b2(x-1)
giải và biện luận pt chứa tham số m a) m(x-1)=5-(m-1)x b) m(mx-1)=x+1
a) Ta có: \(m\left(x-1\right)=5-\left(m-1\right)x\)
\(\Leftrightarrow mx-m-5+mx-x=0\)
\(\Leftrightarrow\left(2m-1\right)x=5\)
-Nếu \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\) :pt có dạng \(x=\dfrac{5}{2m-1}\)
=>pt có nghiệm \(x=\dfrac{5}{2m-1}\)
-Nếu \(2mm-1=0\Leftrightarrow m=\dfrac{1}{2}\):pt có dạng \(0x=5\)
\(\Rightarrow\) PT vô nghiệm
Kết luận: Nếu \(m\ne\dfrac{1}{2}\) thì pt có nghiệm \(x=\dfrac{5}{2m-1}\)
Nếu \(m=\dfrac{1}{2}\) thì pt vô nghiệm
d) Ta có: \(m\left(mx-1\right)=x+1\)
\(\Leftrightarrow\left(m^2-1\right)x=m+1\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)x=m+1\)
-Nếu\(m=1\) : pt \(\Leftrightarrow0x=2\): pt vô nghiệm
-Nếu\(m\ne1\): pt\(\Leftrightarrow x=\dfrac{1}{m-1}\)
+nếu \(m=-1\): pt \(0x=0\) : pt có vô số nghiệm \(x\) thuộc R
+ nếu \(m\ne-1\): pt \(\Leftrightarrow x=\dfrac{1}{m-1}\)
Kết luận: Nếu \(m=1\) thì pt vô nghiệm
Nếu \(m\ne1\) ,\(m\ne1\) thì pt có nghiệm \(x=\dfrac{1}{m-1}\)
Nếu \(m=-1\) thì pt có vô số nghiệm \(x\) thuộc R
a: =>mx-m=5-mx+x
=>mx-m-5+mx-x=0
=>x(m+m-1)=m+5
=>x(2m-1)=m+5
Để phương trình vô nghiệm thì 2m-1=0
=>m=1/2
Để phương trình có nghiệm duy nhất thì 2m-1<>0
=>m<>1/2
b: =>m^2x-m-x-1=0
=>x(m^2-1)=m+1
Để phương trình có vô số nghiệm thì m+1=0
=>m=-1
Để phương trìnhvô nghiệm thì m-1=0
=>m=1
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1 và m<>-1
Giải và biện luận các pt sau:(x là ẩn,m là tham số)
a)7(m-11)x-2x+14=5m
a) 7(m-11)X - 2X + 14 = 5m
<=> ( 7m - 77 - 2 )X = 5m -14
<=> (7m - 79 )X = 5m - 14
TH1: 7m - 79 = 0 <=> m = \(\frac{79}{7}\)
Thay m = \(\frac{79}{7}\), ta có :
0X = 5 x \(\frac{79}{7}\) -14
<=> 0X = \(\frac{297}{7}\)
PT vô nghiệm
TH2: m \(\ne\frac{79}{7}\)
<=> phương trình có nghiệm duy nhất x = \(\frac{5m-14}{7m-79}\)
Giải và biện luận các pt sau:(x là ẩn,m là tham số)
a)7(m-11)x-2x+14=5m
Giải hệ phương trình 2x+my=1 (m là tham số)
mx+2y=1
a) Giải hệ pt khi m=3
b) Giải và biện luận hệ pt theo tham số m
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
giải và biện luận phương trình sau:
a, m(x-1)=5-(m-1)x
b, (m*m-2m)x+5=5m-mx
với m là tham số (m*m là m mũ 2)
Giải và biện luận pT tham số m
mx2-(m+1)x+2>=0
+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm
a=0 va b=0 thi phuong trình có vô sô nghiệm
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn)
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0
<=> x(m^2-3m+2)-m^2+m=0 (2)
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất
x=m-m^2/m^2-3m+2 <=> x=m/m-2
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm
giải và biện luận pt : \(\left(m^2+2\right)x=x-2m\) ( m là tham số )
phương trình \(\Leftrightarrow\) \(\left(m^2+1\right)x=-2m\) \(\Leftrightarrow\) \(x=-\frac{2m}{m^2+1}\)
đây là nghiệm duy nhất cần tìm
câu 2 cho pt bậc hai ẩn x(m là tham số ):\(x^2+2\left(m-1\right)x-2m+5=0\)
1)giải và biện luận số nghiệm của\(x_1;x_2\) của (m) theo tham số m
2)tìm m sao cho \(x_{1;}x_2\) thoả mãn:
a)\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\)
b)\(x_1+x_2+2x_1x_2\le6\)
a, \(\Delta'=\left(m-1\right)^2-\left(-2m+5\right)=m^2-2m+1+2m-5=m^2-4\)
Để pt vô nghiệm thì \(m^2-4< 0\Leftrightarrow-2< m< 2\)
Để pt có nghiệm kép thì \(m^2-4=0\Leftrightarrow m=\pm2\)
Để pt có 2 nghiệm phân biệt thì \(m^2-4>0\Leftrightarrow\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-2m+5\end{matrix}\right.\)
\(a,ĐKXĐ:x_1,x_2\ne0\\ \dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m-2\right)^2-4\left(-2m+5\right)=0\\ \Leftrightarrow4m^2-8m+4+8m-20=0\\ \Leftrightarrow4m^2-16=0\\ \Leftrightarrow m=\pm2\)
\(b,x_1+x_2+2x_1x_2\le6\\ \Leftrightarrow2m-2+2\left(-2m+5\right)\le6\\ \Leftrightarrow2m-2-4m+10-6\le0\\ \Leftrightarrow-2m+2\le0\\ \Leftrightarrow m\ge1\)