cho a,b,c>0 và a+b+c=1.Tìm GTNN:
\(M=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho a,b,c>0 và a+b+c=1.Tìm GTNN của:
\(M=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho a,b,c>0 và a+b+c=1.Tìm GTNN của:
\(M=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
cho a,b,c>0 và a+b+c=1.Tìm GTNN của:
\(M=\sqrt{a^2-ac+c^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho a,b,c > 0 và a + b + c = 2019
Tìm GTNN của
S = \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca=a^2}\)
\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)
Áp dụng BDT : Cô-si:
\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}a=b=c\\a+b+c=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=673\\b=673\\c=673\end{matrix}\right.\)
Vậy \(S_{Min}=2019\) khi \(a=b=c=673\)
cho a,b,c>0 t/m a + b + c = 2. Tìm GTNN của
\(S=\dfrac{ab}{\sqrt{2c+ab}}+\dfrac{bc}{\sqrt{2a+bc}}+\dfrac{ca}{\sqrt{2b+ca}}\)
cho a,b là các số dương thỏa mãn: a+b+c=3
Tìm GTNN của M=\(\sqrt{a^2+ab+b^2}\)+\(\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Cho a, b, c > 0 thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). Tìm GTNN của biểu thức:
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Áp dụng BĐT Cauchy swarchz ta có:
A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2} \)
Mà \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1 \)
=>\(A\ge\frac{1}{2} \)
Dấu "=" xảy ra <=>a=b=c=\(\frac{1}{3} \)
Cho a, b, c là các số thực dương. Tìm GTNN của biểu thức:
\(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\)
Biểu thức không có giá trị min bạn nhé. Chỉ có giá trị max.
Lời giải:
\(2P=1-\frac{a}{a+2\sqrt{bc}}+1-\frac{b}{b+2\sqrt{ca}}+1-\frac{c}{c+2\sqrt{ab}}\)
\(=3-\left(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{a+2\sqrt{bc}}+\frac{b}{b+2\sqrt{ac}}+\frac{c}{c+2\sqrt{ab}}\geq \frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{a+2\sqrt{bc}+b+2\sqrt{ac}+c+2\sqrt{ab}}=\frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}{(\sqrt{a}+\sqrt{b}+\sqrt{c})^2}=1\)
Do đó: $2P\leq 3-1=2\Rightarrow P\leq 1$
Vậy $P_{\max}=1$ khi $a=b=c$