PM

cho a,b,c>0 và a+b+c=1.Tìm GTNN:
\(M=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)

TD
10 tháng 12 2015 lúc 12:04

\(\sqrt{2}M=\sqrt{\left(a-b\right)^2+\left(a^2+b^2\right)}+\sqrt{\left(b-c\right)^2+\left(b^2+c^2\right)}+\sqrt{\left(c-a\right)^2+\left(c^2+a^2\right)}\ge\sqrt{2ab}+\sqrt{2bc}+\sqrt{2ca}\)\(\Leftrightarrow M\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu bằng xảy ra khi và chỉ khi a = b, b = c, c = a \(\Leftrightarrow\)a = b = c = \(\frac{1}{3}\)(vì a + b + c = 1).

Suy ra : \(M\ge\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy GTNN của M là 1 khi a = b = c = \(\frac{1}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
PK
Xem chi tiết
IU
Xem chi tiết
PH
Xem chi tiết
TV
Xem chi tiết