Những câu hỏi liên quan
DA
Xem chi tiết
BB
23 tháng 2 2020 lúc 21:50
n3+ 3n2+ 2018 n = n.(n+1)(n+2) + 2016nvì n.(n+1)(n+2) là tích của 3 số nguyên liên tiếp nên vừa chia hết cho 2 và vừa chia hết cho 3 nên n.(n+1)(n+2)chia hết cho 6 .2016n luôn chia hết cho 6 Vậy n3+ 3n2+ 2018 n luôn chia hết cho 6 với mọi n € Z P/S : Good Luck
~Best Best~

Bình luận (0)
 Khách vãng lai đã xóa
FD
23 tháng 2 2020 lúc 22:04

Ta có: n3 + 3n2 + 2018n = (n3 + 3n2 + 2n) + 2016n

Xét (n3 + 3n2 + 2n) (1); 2016n (2)

Xét (n3 + 3n2 + 2n) (1), có:

n3 + 3n2 + 2n

<=> (n3 + n2) + (2n2 + 2n)

<=> n2(n + 1) + 2n(n + 1)

<=> (n + 1)(n2 + 2n) <=> n(n + 1)(n + 2)

Vì n là số nguyên, nên: n(n + 1)(n + 2) là tích của 3 số nguyên liên tiếp.

=> Vậy sẽ tồn tại số chia hết cho 2 (vì n(n + 1) là tích 2 số nguyên liên tiếp)

=> Vậy sẽ tồn tại số chia hết cho 3 (vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp)

=> (n3 + 3n2 + 2n) chia hết cho cho 6 (vì 6 = 2.3 và ƯC{2;3}∈{1}).(3)

Xét 2016n (2) có: 2016 ⋮ 6 và n là số nguyên, nên 2016n ⋮ 6. (4)

Từ (3) và (4), suy ra (n3 + 3n2 + 2n) + 2016n ⋮ 6

<=> n3 + 3n2 + 2018n ⋮ 6 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
CM
Xem chi tiết
NH
Xem chi tiết
NL
19 tháng 2 2020 lúc 21:23

\(n^3+3n^2+2n+2016n\)

\(=n\left(n^2+3n+2\right)+2016n\)

\(=n\left(n+1\right)\left(n+2\right)+2016n\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)

\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
HP
23 tháng 1 2021 lúc 11:55

Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)

Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)

Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2

\(\Rightarrow\) vô lí

Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán

Bình luận (0)
NH
Xem chi tiết
HH
Xem chi tiết
PA
Xem chi tiết
HN
15 tháng 1 2017 lúc 20:58

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

Bình luận (0)
DL
Xem chi tiết