Những câu hỏi liên quan
LD
Xem chi tiết
DA
Xem chi tiết
TA
Xem chi tiết
H24
2 tháng 3 2018 lúc 15:30

\(\left\{{}\begin{matrix}x;y>0\\x+y=1\end{matrix}\right.\)\(\Rightarrow0< xy=t\le\dfrac{1}{4}\)

\(x^4+y^4=\left(1-2t\right)^2-2t\)

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\Leftrightarrow A=8\left[\left(1-2t\right)^2-2t\right]+\dfrac{1}{t}-5\ge0\)

\(\Leftrightarrow16t^2-32t+\dfrac{1}{t}+3\ge0\)\(\Leftrightarrow16t^3-32t^2+3t+1\ge0\)

<=>\(16t^3-4t^2-28t^2+7t-4t+1\ge0\)

\(\Leftrightarrow4t^2\left(4t-1\right)-7t\left(4t-1\right)-\left(4t-1\right)\ge0\)

\(\Leftrightarrow\left(4t-1\right)\left(4t^2-7t-1\right)\ge0\)

\(\Leftrightarrow B=\left(4t-1\right)\left(8t-7-\sqrt{65}\right)\left(8t-7+\sqrt{65}\right)\ge0\)

\(0< t\le\dfrac{1}{4}\Rightarrow\)\(\left\{{}\begin{matrix}4t-1\le0\\8t-7+\sqrt{65}>0\\8t-7-\sqrt{5}< 0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

mọi phép biến đổi <=> => dpcm

Bình luận (2)
UK
3 tháng 3 2018 lúc 11:54

Sử dụng BĐT Cauchy-Schwarz nhiều lần, cộng với BĐT phụ \(\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\), ta có:

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge\dfrac{8\left(x^2+y^2\right)^2}{2}+\dfrac{4}{\left(x+y\right)^2}=4\left(x^2+y^2\right)^2+4\ge4\left[\dfrac{\left(x+y\right)^2}{2}\right]^2+4=5\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (2)
NH
3 tháng 9 2019 lúc 15:19

Hỏi đáp Toán

Bình luận (2)
VM
Xem chi tiết
HT
7 tháng 5 2015 lúc 21:36

 có bđt: a²+b² ≥ (a+b)²/2 (*) 
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b 
- - - 
ad (*) 2 lần liên tiếp: 
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8 
=> 8(x^4 + y^4) ≥ 1 (*) 

mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy 
=> 1/xy ≥ 4/(x+y)² = 4 (**) 

(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2 

Bình luận (0)
H24
Xem chi tiết
QH
Xem chi tiết
HN
19 tháng 9 2016 lúc 11:57

Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)

Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Vì hai vế luôn dương nên ta bình phương hai vế được : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)

Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)

\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)

Mà theo bất đẳng thức Bunhiacopxki , ta có : 

\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)

Cộng (1) , (2) và (3) theo vế ta được (*) đúng

Vậy bđt ban đầu được chứng minh.

Bình luận (0)
BO
19 tháng 9 2016 lúc 20:57

chịu thua

Bình luận (0)
VD
Xem chi tiết
DN
26 tháng 10 2018 lúc 22:54

Là sao ko hiểu đề

Bình luận (0)
MN
Xem chi tiết
KT
Xem chi tiết
NM
31 tháng 12 2015 lúc 21:25

\(x+y=1\ge2\sqrt{xy}\Leftrightarrow xy\le\frac{1}{4}\)

\(A=8\left(x^4+y^4\right)+\frac{1}{xy}\ge16x^2y^2+\frac{1}{xy}=16x^2y^2+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge3\sqrt[3]{16x^2y^2.\frac{1}{4xy}.\frac{1}{4xy}}+\frac{1}{2.\frac{1}{4}}=5\)

Dâu ' = ' xảy ra khi  x =y = 1/2

Bình luận (0)