(2-m)x+2m=0
Tìm m sao cho pt trên là pt bậc nhất
cho pt \(x^{2}\)-(m+3)\(x\)+2m+2=0
tìm m đê pt có 2 nghiệm phân biệt \(x_1\);\(x_2\) sao cho \(x^{2}_1\)+\(x^{2}_2\)=13
Bổ sung thêm cho bạn Song Thư:
∆ = b² - 4ac = [-(m + 3)]² - 4(2m + 2)
= m² + 6m + 9 - 8m - 8
= m² - 2m + 1
= (m - 1)² ≥ 0 với mọi m
Vậy phương trình luôn có hai nghiệm phân biệt
\(x^2-\left(m+3\right)x+2m+2=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=2m+2\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-13=0\)
\(\Leftrightarrow\left(m+3\right)^2-2\left(2m+2\right)-13=0\)
\(\Leftrightarrow\left(m^2+6m+9\right)-4m-4-13=0\)
\(\Leftrightarrow m^2+2m-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Cho pt: X^2 - 2(m-1)x + m^2 - 2m = 0
tìm M để pt vô nghiệm
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0\)
vậy pt có 2 nghiệm pb
hay ko có gtri m để pt vô nghiệm
\(\Delta'=\left(m-1\right)^2-\left(m^2-2m\right)=m^2-2m+1-m^2+2m=1>0.\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi x thuộc R.
\(\Rightarrow\) \(m\in\phi.\)
Cho PT: x2 - 2(m+1)x + 2m - 3 = 0
Tìm các giá trị của m để PT có 2 nghiệm phân biệt x1, x2 thỏa mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\) đạt giá trị nhỏ nhất.
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
Cho pt: (m+1)x2 - m3x + m3 - m = 0
Tìm m để pt trên có nghiệm duy nhất.
TH1: m=-1
=>x+(-1)^3-(-1)=0
=>x-1+1=0
=>x=0
=>Nhận
TH2: m<>-1
Δ=(-m^3)^2-4*(m+1)(m^3-m)
=m^6-4(m^4-m^2+m^3-m)
=m^6-4m^4+4m^2-4m^3+4m
Để phương trình có nghiệm duy nhất thì m^6-4m^4-4m^3+4m^2+4m=0
=>\(m\in\left\{\text{− 0.79168509 , 1.08715371 , 2.14211518}\right\}\)
Bài 1: Cho pt: 2(m-1) x + 3 = 2m - 5 (1)
a) tìm m để pt (1) là pt bậc nhất một ẩn
b) Tìm m để pt vô nghiệm
c) Tìm m để pt có nghiệm duy nhất
d) Tìm m để pt vô số nghiệm %3D
e) Với giá trị nào của m thì pt (1) tương đương với pt 2x+5 = 3(x+2)-1
giúp mk vs ạ, mk cam tạ
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Cho pt: 4x2 + (m2+2m-15)x + (m+1)2-20=0
Tìm tất cả các giá trị của m để pt có 2 ngiệm x1, x2 thoả mãn: x12+x22+2019=0
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$
Bài 4: Cho PT sau : ( m2 + 1 ) x - 2m = 0 ( m là tham số)
a) CMR : PT là PT bậc nhất 1 ẩn với mọi n
b) Tìm m để nghiện của PT
- Đạt GTLN
- Đạt GTNN
Bài 2: Chứng minh các PT sau là PT bậc nhất một ẩn
a) (m2 + m + 1) x - 3 = 0
b) ( m2 + 2m + 3 ) x - m + 1 = 0
a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn
b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)
Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn
a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy ta có đpcm
b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)
Vậy ta có đpcm
(2m-8) x+3=0 tìm M=? để Pt là pt bậc nhất 1 ẩn
\(\Leftrightarrow2m-8< >0\)
hay m<>4