Bài 2: Phương trình bậc nhất một ẩn và cách giải

LD

Bài 2: Chứng minh các PT sau là PT bậc nhất một ẩn
a) (m2 + m + 1) x - 3 = 0
b) ( m+ 2m + 3 ) x - m + 1 = 0
 

NT
27 tháng 1 2022 lúc 21:47

a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn

b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)

Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn

Bình luận (0)
NT
27 tháng 1 2022 lúc 21:48

a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy ta có đpcm 

b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)

Vậy ta có đpcm 

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
PN
Xem chi tiết
NN
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết
VH
Xem chi tiết
HL
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết