Những câu hỏi liên quan
NT
Xem chi tiết
H24
25 tháng 4 2023 lúc 17:30

Này là kiến thức lớp 10 mà bạn...

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 10:44

a, Ta có: \({\sin ^2}x + co{s^2}x = 1\)

\(\begin{array}{l} \Leftrightarrow {\sin ^2}\alpha  + {\left( {\frac{1}{3}} \right)^2} = 1\\ \Leftrightarrow \sin \alpha  =  \pm \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}}  =  \pm \frac{{2\sqrt 2 }}{3}\end{array}\)

Vì \( - \frac{\pi }{2} < \alpha  < 0\) nên \(sin\alpha  < 0 \Rightarrow \sin \alpha  =  - \frac{{2\sqrt 2 }}{3}\).

\(b)\;\,sin2\alpha  = 2sin\alpha .cos\alpha  = 2.\left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{1}{3} =  - \frac{{4\sqrt 2 }}{9}\)

\(c)\;cos(\alpha  + \frac{\pi }{3}) = cos\alpha .cos\frac{\pi }{3} - sin\alpha .sin\frac{\pi }{3}\)\( = \frac{1}{3}.\frac{1}{2} - \left( { - \frac{{2\sqrt 2 }}{3}} \right).\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt 6  + 1}}{6}\).

Bình luận (0)
H24
Xem chi tiết
QL
21 tháng 9 2023 lúc 21:52

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

Bình luận (0)
H24
Xem chi tiết
QL
21 tháng 9 2023 lúc 20:45

Ta có:

 \(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi  + \alpha } \right) =  \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2}  + \alpha } \right) - \cos \left( {12\pi  + \pi + \alpha } \right) =  \sin \left( {-8\pi  + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha  \right) = \cos \left( \alpha  \right) + \cos \left( \alpha  \right) = 2\cos \left( \alpha  \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:16

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

Bình luận (0)
AT
Xem chi tiết
NL
7 tháng 6 2020 lúc 0:48

\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)

\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)

\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)

Bình luận (0)
H24
Xem chi tiết
HM
25 tháng 8 2023 lúc 1:51

\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)

\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)

\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)

Bình luận (0)
DD
Xem chi tiết
DD
Xem chi tiết