Chọn đáp án đáp án đúng:
1. Cho \(sin\alpha.cos\left(\alpha+\beta\right)=sin\beta\) với \(\alpha+\beta\ne\frac{\pi}{2}+k\pi,\alpha\ne\frac{\pi}{2}+l\pi\left(k,l\in Z\right)\) ta có:
A. \(tan\left(\alpha+\beta\right)=2cot\alpha\)
B. \(tan\left(\alpha+\beta\right)=2cot\left(\beta\right)\)
C. \(tan\left(\alpha+\beta\right)=2tan\beta\)
D. \(tan\left(\alpha+\beta\right)=2tan\alpha\)
2. Rút gọn biểu thức \(A=\frac{sin3x+cos2x-sinx}{cosx+sin2x-cos3x}\left(sin2x\ne0;2sinx+1\ne0\right)\)
(Hic ..... cao nhân nào giúp me thì giải thích rõ ràng chút được ko ạ?)
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
Rút gọn biểu thức sau: \(A=\sin^2\left(45^o+\alpha\right)-\sin^2\left(30^o-\alpha\right)-\sin15^o.\cos\left(15^o+2\alpha\right)\)
Cho \(\cos\alpha=-\frac{2}{3}\) tính giá trị \(E=\frac{\cot\alpha+3\tan\alpha}{2\cot\alpha+\tan\alpha}\)
Rút gọn biểu thức: \(A=4\sin x\sin\left(x+\frac{\pi}{2}\right)\sin\left(3x+\pi\right)-\cos\left(5\pi-x\right)\)
1/Rút gọn :
\(G=\left(1-sin^2x\right)cot^2x+1-cot^2x\)
2/ Nếu \(tan\alpha+cot\alpha=2\) thì \(tan^2\alpha+cot^2\alpha\) bằng bao nhiêu?
Một dây curoa quấn quanh trục tròn tâm I bán kính r và trục tròn tâm J bán kính R. Biết AB = d và góc α (rad) theo hình vẽ:
Độ dài của đoạn dây curoa là:
A. αr + αR + d
B. 2(α + αR + d)
C. (π - α)r + αR + d
D. 2[αr + (π - α)R + d]
Một đa giác đều có góc ở mỗi đỉnh bằng \(\alpha\) và nội tiếp đường tròn bán kính R thì độ dài mỗi cạnh của nó là? (giải chi tiết)
A. \(2Rsin\alpha\) B. \(Rsin\alpha\) C. \(\dfrac{R}{sin\alpha}\) D. \(\dfrac{3R}{2sin\alpha}\)