Những câu hỏi liên quan
KG
Xem chi tiết
LP
17 tháng 10 2023 lúc 19:20

\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Ta có đpcm

Bình luận (0)
LT
Xem chi tiết
NL
11 tháng 3 2021 lúc 10:42

\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xảy ra khi \(x=y=4\)

Bình luận (0)
TV
Xem chi tiết
NC
28 tháng 2 2021 lúc 14:13

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

Bình luận (0)
H24
28 tháng 2 2021 lúc 15:13

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

Bình luận (0)
DF
Xem chi tiết
NL
10 tháng 1 2021 lúc 21:57

\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)

Ta có:

\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)

\(VT\ge2\left(x+y+z\right)+2y+4x\)

\(VT\ge2\left(3x+2y+z\right)\ge4\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
DH
Xem chi tiết
TN
9 tháng 6 2017 lúc 22:03

bài này mà còn ko làm được thì học nỗi gì

*)biến đổi tương đương \(\left(x-y\right)^2\ge0\)

*)C-S \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

*)AM-GM \(x+y\ge2\sqrt{xy};\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

Bình luận (0)
SS
9 tháng 6 2017 lúc 22:03

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=2+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{x}{y}.\frac{y}{x}}=4\)

Vì anh ghen thôi mà

Bình luận (0)
PN
9 tháng 6 2017 lúc 22:20

Thắng Nguyễn có vẻ hơi tự tin về năng lực của mk

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
AH
12 tháng 12 2023 lúc 0:06

Lời giải:

$A=\frac{\sqrt{x}-1}{\sqrt{x}+4}=1-\frac{5}{\sqrt{x}+4}$

Vì $x\geq 4\Rightarrow \sqrt{x}\geq 2\Rightarrow \sqrt{x}+4\geq 6$

$\Rightarrow \frac{5}{\sqrt{x}+4}\leq \frac{5}{6}$

$\Rightarrow A=1-\frac{5}{\sqrt{x}+4}\geq 1-\frac{5}{6}=\frac{1}{6}$

Vậy $A_{\min}=\frac{1}{6}$. Giá trị này đạt tại $x=4$.

Bình luận (0)
TT
Xem chi tiết
NT
17 tháng 7 2019 lúc 19:13

Bài 1:

Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)

Dấu \(=\) xảy ra khi \(x=y, xy=1\)\(x+y=2\) hay \(x=y=1\)

Bình luận (0)
AH
17 tháng 7 2019 lúc 17:43

Bài 1:

Áp dụng BĐT Cô-si cho các số dương:

\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)

\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)

Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

Bình luận (0)
AH
17 tháng 7 2019 lúc 17:46

Bài 2:

Vì $xyz=1$ nên:

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{z+x+y}{xyz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}\)

Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq 2(1)\)

\(\frac{2}{3}(x+y+z)\geq \frac{2}{3}.3\sqrt[3]{xyz}=\frac{2}{3}.3=2(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\geq 2+2=4\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)
GD
Xem chi tiết
LD
23 tháng 10 2020 lúc 15:22

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NL
28 tháng 2 2021 lúc 16:47

\(\lim\limits_{x\rightarrow4^+}f\left(x\right)=\lim\limits_{x\rightarrow4^+}\sqrt{x^2-4x}=0\)

\(\lim\limits_{x\rightarrow4^-}f\left(x\right)=\lim\limits_{x\rightarrow4^-}\left(x+a\right)=a+4\)

Hàm tồn tại giới hạn tại x=4 khi \(a+4=0\Leftrightarrow a=-4\)

Bình luận (0)