Cho \(x\ge4;\) \(y\ge9\);\(z\ge1\)
Chứng minh: \(xy\sqrt{z-1}+yz\sqrt{x-4}+zx\sqrt{y-9}< xyz\)
Cho \(x>0;\) \(y>0;\) \(x+y\le1\). CM: \(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge4\)
\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có đpcm
Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xảy ra khi \(x=y=4\)
Cho x ; y là các số thực dương thỏa mãn
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
Chứng minh rằng :
\(\sqrt{x}+\sqrt{y}\ge4\)
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
`1/x+1/y>=2/(\sqrt{xy})`
`<=>1/2>=2/(\sqrt{xy})`
`<=>\sqrt{xy}>=4`
`=>\sqrt{x}+\sqrt{y}>=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge4\)
\(2=4\sqrt{xy}+2\sqrt{xz}\le2x+2y+x+z=3x+2y+z\)
Ta có:
\(VT=\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}=2\left(\dfrac{xy}{z}+\dfrac{zx}{y}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{xy}{z}\right)+2\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\)
\(VT\ge2\left(x+y+z\right)+2y+4x\)
\(VT\ge2\left(3x+2y+z\right)\ge4\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Cho x, y, z > 0. Chứng minh \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
bài này mà còn ko làm được thì học nỗi gì
*)biến đổi tương đương \(\left(x-y\right)^2\ge0\)
*)C-S \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
*)AM-GM \(x+y\ge2\sqrt{xy};\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=2+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{x}{y}.\frac{y}{x}}=4\)
Vì anh ghen thôi mà
Thắng Nguyễn có vẻ hơi tự tin về năng lực của mk
Cho số thực \(x\ge0\) chứng minh rằng \(\sqrt{x}+\frac{30}{x+3}\ge4\)
Tìm min \(\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\) với \(x\ge4\)
Lời giải:
$A=\frac{\sqrt{x}-1}{\sqrt{x}+4}=1-\frac{5}{\sqrt{x}+4}$
Vì $x\geq 4\Rightarrow \sqrt{x}\geq 2\Rightarrow \sqrt{x}+4\geq 6$
$\Rightarrow \frac{5}{\sqrt{x}+4}\leq \frac{5}{6}$
$\Rightarrow A=1-\frac{5}{\sqrt{x}+4}\geq 1-\frac{5}{6}=\frac{1}{6}$
Vậy $A_{\min}=\frac{1}{6}$. Giá trị này đạt tại $x=4$.
B1
Cho x,y>0 và xy=1. Chứng minh (x+y+1)(\(x^2+y^2\))+\(\frac{4}{x+y}\ge8\)
B2 Cho x,y,z>0 và xyz=1. CMR
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\ge4\)
B3 Cho a là số dương . CMR \(\frac{a^2}{4}+\frac{9}{a+1}\ge4\)
Bài 1:
Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)
Dấu \(=\) xảy ra khi \(x=y, xy=1\) và \(x+y=2\) hay \(x=y=1\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương:
\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)
\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)
Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Bài 2:
Vì $xyz=1$ nên:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}=\frac{z+x+y}{xyz}+\frac{3}{x+y+z}=x+y+z+\frac{3}{x+y+z}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x+y+z}{3}+\frac{3}{x+y+z}\geq 2(1)\)
\(\frac{2}{3}(x+y+z)\geq \frac{2}{3}.3\sqrt[3]{xyz}=\frac{2}{3}.3=2(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{3}{x+y+z}\geq 2+2=4\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Cho x, y > 0 va x + y <= 1 . Chung minh rang :\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)
Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)
Ta có : \(x+y\le1\)
=> \(\left(x+y\right)^2\le1\)
=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )
=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )
=> đpcm
Đẳng thức xảy ra <=> x = y = 1/2
2, Cho \(f\left(x\right)=\left\{{}\begin{matrix}\sqrt{x^2-4x}khix\ge4\\x+akhix< 4\end{matrix}\right.\)
Tìm a để hàm số tồn tại giới hạn tại x=4
\(\lim\limits_{x\rightarrow4^+}f\left(x\right)=\lim\limits_{x\rightarrow4^+}\sqrt{x^2-4x}=0\)
\(\lim\limits_{x\rightarrow4^-}f\left(x\right)=\lim\limits_{x\rightarrow4^-}\left(x+a\right)=a+4\)
Hàm tồn tại giới hạn tại x=4 khi \(a+4=0\Leftrightarrow a=-4\)