C/m: \(\forall\) n \(\in\)\(ℤ^+\):a) 2n >2n+1 (n\(\ge\)3)
b) 2n \(\ge\)n2 (n\(\ge\)4)
Tính các tổng sau :
\(D=1+2^2+2^4+...+2^{2n}\),với
\(S=1+a+a^2+a^3+...+a^n\)( a\(\ge\)2, n\(\in\)N)
\(S=1+a^2+a^4+...+a^{2n}\)( a\(\ge\)2, n\(\in\)N)
\(S=a+a^3+a^5+....+a^{2n+1}\)( a\(\ge\)2, n\(\in\)N*)
Cho a,b \(\in\)R tm a2n+1+b2n+1>a2n+b2n mọi n\(\in\)N*
CMR a2n+2+b2n+2\(\ge\)a2n+1+b2n+1
Chứng minh các mệnh đề sau đúng với mọi n ϵN*
1/ (13n - 1)⋮6
2/ 2n-1 > 2n -1 ∀n ≥ 4, n ∈ Z
3/ Tổng các góc trong của 1 đa giác lồi n cạnh ( với n ≥3)
(n-2).180o
Mọi người giúp em với ạ. Cảm ơn nhiều.
a / tìm công thức tổng quát của tổng : 1 + a^2 + a^3 +a^4 + ... + a^(2n+2) với n \(\in\) N , n \(\ge\) 2
b / tìm công thức tổng quát của tổng : a + a^3 + a^5 +a^7 + ... + a^(2n+1) với n \(\in\) N , n \(\ge\) 2
Cmr
a.22225555+55552222 chia hết cho 7
b.42n-32n-7 chia hết cho 168 với n\(\ge\)1,n\(\in\)N
c.\(2^{2^{2n}}+5\) chia hết cho 7 với n\(\in\)N,n>1
d.22002-4 chia hết cho 31
Các bạn làm giùm mik gấp nha bài nào cũng đc
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
Cho A = \(m^2n^2-4m-2n\) với m,n \(\in\) N*
a. n =2 . Tìm m để A chính phương
b. Chứng minh: với mọi n \(\ge\) 5 thì A không chính phương
Akai Haruma
Nguyễn Việt Lâm
- Giải giúp em với ạ :(
chứng minh
nn\(\ge\)(n+1)n-1(n!)2\(\ge\)nn(62n+32n+2+3) chia hết cho 11Cho: A = \(n^6-n^4+2n^3+2n^2\left(\forall n\in N;n>1\right)\)
C/m: A ko phải là số chính phương
Ta có :
\(A=n^6-n^4+2n^3+2n^2\)
\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)
\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)
\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)
\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)
\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)
\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)
Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Và \(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)
Vậy A không phải số chính phương