Những câu hỏi liên quan
H24
Xem chi tiết
TQ
Xem chi tiết
NL
21 tháng 7 2021 lúc 22:20

a.

ĐKXĐ: \(x\ge\dfrac{23}{4}\)

\(\sqrt{x+10}=\sqrt{x+3}+\sqrt{4x-23}\)

\(\Leftrightarrow x+10=5x-20+2\sqrt{\left(x+3\right)\left(4x-23\right)}\)

\(\Leftrightarrow\sqrt{4x^2-11x-69}=15-2x\) \(\left(x\le\dfrac{15}{2}\right)\)

\(\Leftrightarrow4x^2-11x-69=\left(15-2x\right)^2\)

\(\Leftrightarrow49x-294=0\)

\(\Leftrightarrow x=6\) (thỏa mãn)

Bình luận (0)
NL
21 tháng 7 2021 lúc 22:23

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(\sqrt{3x+4}=\sqrt{2x+1}+\sqrt{x+3}\)

\(\Leftrightarrow3x+4=3x+4+2\sqrt{\left(2x+1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)\left(x+3\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
NL
7 tháng 2 2021 lúc 10:50

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

Bình luận (0)
TT
7 tháng 2 2021 lúc 11:02

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

Bình luận (0)
L2
Xem chi tiết
H24
26 tháng 10 2021 lúc 10:01

1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

2) ĐKXĐ: \(x\ge3\)

\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)

4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)

 

Bình luận (0)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:18

a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)

\(\Leftrightarrow2x+9=5-4x\)

\(\Leftrightarrow6x=-4\)

hay \(x=-\dfrac{2}{3}\left(nhận\right)\)

b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)

\(\Leftrightarrow2x-1=x-1\)

hay x=0(loại)

c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2+3x=x\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
KK
30 tháng 8 2021 lúc 20:36

a. \(\sqrt{2x+9}=\sqrt{5-4x}\)

<=> 2x + 9 = 5 - 4x 

<=> 2x + 4x = 5 - 9

<=> 6x = -4

<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)

Bình luận (0)
NT
30 tháng 8 2021 lúc 21:39

d: Ta có: \(\sqrt{2x^2-3}=\sqrt{4x-3}\)

\(\Leftrightarrow2x^2-3=4x-3\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
LG
Xem chi tiết
AH
22 tháng 6 2021 lúc 23:23

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

Bình luận (0)
MD
Xem chi tiết
NT
5 tháng 1 2021 lúc 21:33

1) Ta có: \(\left|x^2-4x-5\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x-1\left(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\right)\\-x^2+4x+5=x-1\left(-1< x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5-x+1=0\\-x^2+4x+5-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=0\\-x^2+3x+6=0\end{matrix}\right.\Leftrightarrow x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{41}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{\sqrt{41}}{2}\\x-\dfrac{5}{2}=-\dfrac{\sqrt{41}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{41}+5}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{41}+5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{41}+5}{2}\right\}\)

Bình luận (0)
TB
Xem chi tiết
AN
17 tháng 11 2016 lúc 15:11

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

Bình luận (0)
AN
17 tháng 11 2016 lúc 14:33

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)

Bình luận (0)
AN
17 tháng 11 2016 lúc 14:39

b/ \(2x-8\sqrt{2x-3}+9=0\)

\(\Leftrightarrow\left(2x-3-2.4.\sqrt{2x-3}+16\right)-4=0\)

\(\Leftrightarrow\left(4-\sqrt{2x-3}\right)^2-4=\)

\(\Leftrightarrow\left(2-\sqrt{2x-3}\right)\left(6-\sqrt{2x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2=\sqrt{2x-3}\\6=\sqrt{2x-3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{39}{2}\end{cases}}}\)

Bình luận (0)
NT
Xem chi tiết