Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
PH
Xem chi tiết
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
AD
Xem chi tiết
LG
19 tháng 11 2017 lúc 16:18

\(A=x^3y^5+x^5y^3\)

\(=x^3y^3\left(x^2+y^2\right)\)

\(=x^3y^3\left[\left(x+y\right)^2-2xy\right]\)

Thay x + y = 1 vào biểu thức trên ,có :

\(x^3y^3\left(1^2-2xy\right)=-2x^4y^4\)

Ta có: \(2x^4y^4\ge0\) với mọi x

\(\Rightarrow-2x^4y^4\le0\) với mọi x

Dấu = xảy ra khi \(x^4y^4=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy \(Max_A=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Bình luận (2)
MS
19 tháng 11 2017 lúc 16:20

@lê thị hương giang chị ơi \(0+0=1\)

Siêu thật ^^

Bình luận (2)
ND
Xem chi tiết
DH
12 tháng 6 2019 lúc 21:13

Nếu \(y\le0\Rightarrow x^2y^3\le0.\)(1)

Nếu \(y>0\)thì :

\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\frac{x}{2}\frac{x}{2}\frac{y}{3}\frac{y}{3}\frac{y}{3}}=5\sqrt[5]{\frac{x^2y^3}{108}}.\)(bất đẳng thức Cauchy)

Suy ra \(\frac{x^2y^3}{108}\le\left(\frac{1}{5}\right)^5\Leftrightarrow x^2y^3\le\frac{108}{3125}\)(2)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{2}{5}\end{cases}.}\)

Từ (1) và (2) suy ra Giá trị lớn nhất của \(x^2y^3=\frac{108}{3125}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}.}\)

Bình luận (0)
H24
Xem chi tiết
AN
31 tháng 1 2017 lúc 23:06

Đặt x + y = t

=> A = t + 1

Ta có: x2+2xy+7(x+y)+2y2+10=0

<=> (x2 + 2xy + y2) + 7(x + y) + 10 + y2 = 0

<=> (x + y)2 + 7(x + y) + 10 = - y2

<=> t2 + 7t + 10 = - y2 \(\le\)0

<=> \(-5\le t\le-2\)

<=> \(-4\le t+1\le-1\)

<=> \(-4\le A\le-1\)

Vậy GTLN là A = - 1dấu bằng xảy ra khi x = - 2, y = 0; GTNN là A = - 4 dấu bằng xảy ra khi x = - 5, y = 0

Bình luận (0)