Những câu hỏi liên quan
DN
Xem chi tiết
QN
Xem chi tiết
KK
13 tháng 5 2017 lúc 1:08

Ta có \(A+B+C=\pi\)

\(\Rightarrow A+B=\pi-C\)

\(\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)

\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\)

\(\Rightarrow tanA+tanB=-tanC\left(1-tanA.tanB\right)\)

\(\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\) ( đpcm )

Bình luận (0)
NL
Xem chi tiết
H24
23 tháng 9 2016 lúc 15:22

a)\(VT=sinA+sinB+sinC=2sin\frac{A+B}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)(đpcm)

Bình luận (0)
H24
23 tháng 9 2016 lúc 15:25

b)Ta có:\(A+B+C=180^O\)

\(\Rightarrow tan\left(A+B\right)=tan\left(-C\right)=-tanC\)

\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\left(đpcm\right)\)

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
AD
7 tháng 6 2023 lúc 16:03

\(VT=tanA+tanB+tanC=\dfrac{sinA}{cosA}+\dfrac{sinB}{cosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sinA.sinB+cosA.cosB}{cosA+cosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sin\left(A+B\right)}{cosA.cosB}+\dfrac{sinC}{cosC}\)

Theo định lý tổng 3 góc trong tam giác :

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow A+B=180^o-C\\ \Leftrightarrow sin\left(A+B\right)=sin\left(180^o-C\right)=sinC\\ =\dfrac{sinC}{cosAcosB}+\dfrac{sinC}{cosC}\\ =\dfrac{sinC}{cosAcosBcosC}\left(cosC+cosAcosB\right)\\ =\dfrac{sinC}{cosAcosBcosC}\left(-cos\left(A+B\right)+cosAcosB\right)\\ =\dfrac{sinC}{cosAcosBcosC}\left(-cosAcosB+sinAsinB+cosAcosB\right)\\ =\dfrac{sinAsinBsinC}{cosAcosBcosC}\\ =\dfrac{sinA}{cosA}.\dfrac{sinB}{cosB}.\dfrac{sinC}{cosC}=tanA.tanB.tanC=VP\left(đpcm\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 10 2019 lúc 15:22

Vì A, B, C là ba góc của tam giác nên ta có : A + B + C = π.

⇒ C = π - (A + B); A + B = π - C

a) Ta có: tan A + tan B + tan C = (tan A + tan B) + tan C

= tan (A + B). (1 – tan A.tan B) + tan C

= tan (π – C).(1 – tan A. tan B) + tan C

= -tan C.(1 – tan A. tan B) + tan C

= -tan C + tan A. tan B. tan C + tan C

= tan A. tan B. tan C

b) sin 2A + sin 2B + sin 2C

= 2. sin (A + B). cos (A – B) + 2.sin C. cos C

= 2. sin (π – C). cos (A – B) + 2.sin C. cos (π – (A + B))

= 2.sin C. cos (A – B) - 2.sin C. cos (A + B)

= 2.sin C.[cos (A – B) - cos (A + B)]

= 2.sin C.[-2sinA. sin(- B)]

= 2.sin C. 2.sin A. sin B ( vì sin(- B)= - sinB )

= 4. sin A. sin B. sin C

Bình luận (1)
H24
Xem chi tiết
LH
16 tháng 6 2021 lúc 21:17

a) Xét \(\Delta BAE\) và \(\Delta CAF\) có:

\(\widehat{A}\) chung

\(\widehat{AEB}=\widehat{CFA}=90^0\)

nên \(\Delta BAE\sim\Delta CAF\left(g.g\right)\) \(\Rightarrow\dfrac{BA}{CA}=\dfrac{AE}{AF}\)\(\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\) 

Xét \(\Delta ABC\) và \(\Delta AEF\) có:

Góc A chung

\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)

nên \(\Delta ABC\sim\Delta AEF\left(c.g.c\right)\) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=\dfrac{1}{2}\)

\(\Rightarrow2S_{AEF}=S_{ABC}=S_{AEF}+S_{BFEC}\) \(\Leftrightarrow S_{AEF}=S_{BFEC}\) (dpcm)

b) Có  \(\widehat{AFE}=\widehat{ACB}\) (do \(\Delta ABC\sim\Delta AEF\)

\(\Leftrightarrow90^0-\widehat{AFE}=90^0-\widehat{ACB}\)

\(\Leftrightarrow\widehat{EFC}=\widehat{DAC}\) mà \(\widehat{C}\) chung \(\Rightarrow\Delta EFC\sim\Delta HAC\left(g.g\right)\) 

\(\Rightarrow\dfrac{EF}{HA}=\dfrac{FC}{AC}\)\(\Leftrightarrow\dfrac{EF}{HA}=sinA\)\(\Leftrightarrow EF=HA.sinA\)

c)CM được:\(\Delta DHC\sim\Delta FBC\left(g.g\right)\)\(\Rightarrow\dfrac{HD}{BF}=\dfrac{CH}{BC}\Leftrightarrow\dfrac{HD.BC}{BF}=CH\)

\(\Delta HEC\sim\Delta AFC\left(g.g\right)\)\(\Rightarrow\dfrac{HE}{AF}=\dfrac{HC}{AC}\) \(\Leftrightarrow\dfrac{HE.AC}{AF}=HC\)

Xét \(S_{BHC}.tanB-S_{HAC}.tanA\)\(=\dfrac{1}{2}.HD.BC.\dfrac{FC}{BF}-\dfrac{1}{2}.HE.AC.\dfrac{FC}{AF}\)

\(=\dfrac{1}{2}.CH.FC-\dfrac{1}{2}.HC.FC=0\) \(\Leftrightarrow S_{BHC}.tanB-S_{HAC}.tanA=0\) 

\(\Leftrightarrow\dfrac{S_{BHC}}{tanA}=\dfrac{S_{HAC}}{tanB}\) , CM tương tự \(\Rightarrow\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\) 

=>dpcm

Bình luận (0)
TL
Xem chi tiết
CP
Xem chi tiết
CP
7 tháng 8 2019 lúc 21:31

.

Bình luận (1)