Những câu hỏi liên quan
TH
Xem chi tiết
TH
12 tháng 7 2016 lúc 17:47

A>0 chứ ko phải x>0

Bình luận (0)
TA
Xem chi tiết
H9
11 tháng 8 2023 lúc 10:57

a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)

\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(P=\dfrac{1}{\sqrt{x}-1}\)

b) P = \(\dfrac{1}{2}\) khi:

\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)

\(\Rightarrow2=\sqrt{x}-1\)

\(\Rightarrow\sqrt{x}=3\)

\(\Rightarrow x=9\left(tm\right)\)

Bình luận (0)
NT
11 tháng 8 2023 lúc 10:51

a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b: P=1/2

=>căn x-1=2

=>căn x=3

=>x=9

Bình luận (0)
T2
11 tháng 8 2023 lúc 11:35

a) Để rút gọn biểu thức P, ta thực hiện các bước sau: P = [(1/(x-√x)) + (√x/(x-1))] : [(x√x-1)/(x√x-√x)] Đầu tiên, ta nhân tử và mẫu của phân số bên trái với (x-√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [(1/(x-√x)) * (x-√x) + (√x/(x-1)) * (x-√x)] : [(x√x-1)/(x√x-√x)] P = [1 + (√x * (x-√x))/(x-1)] : [(x√x-1)/(x√x-√x)] Tiếp theo, ta nhân tử và mẫu của phân số bên phải với (x√x+√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [1 + (√x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x+√x)] : [(x√x-1)/(x√x-√x)] P = [(x√x+√x + √x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x + x - x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^3 + 3x√x + 2x)] / [(x-1) * (x√x-1)] P = (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) Vậy biểu thức P sau khi rút gọn là (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1). b) Để tìm x để P = 1/2, ta giải phương trình: (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) = 1/2 Nhân cả hai vế của phương trình với (x^2√x - x√x - x + 1) để loại bỏ mẫu phân số: 2(x^3 + 3x√x + 2x) = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x - x^2√x + x√x + x - 1 = 0 2x^3 + 5x√x + 5x - x^2√x - 1 = 0 Đây là phương trình không thể giải bằng phép tính đơn giản. Ta có thể sử dụng phương pháp số học hoặc phương pháp đồ thị để tìm nghiệm của phương trình này.

Bình luận (0)
NN
Xem chi tiết
HH
28 tháng 6 2017 lúc 16:10

a.ĐKXĐ;\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

b.P=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)

=\(\frac{3x-6\sqrt{x}}{x-4}=\frac{3\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\frac{3\sqrt{x}}{\sqrt{x}+2}\)

c.P=2\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow3\sqrt{x}=2\sqrt{x}+\text{4}\)\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Vậy x=16

Bình luận (0)
LN
17 tháng 10 2018 lúc 21:44

thần đồng

Bình luận (0)
NM
Xem chi tiết
TH
1 tháng 10 2017 lúc 21:53

\(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\div\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}.\)

=\(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{2}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{2+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}\)

\(=\frac{1+x}{\sqrt{x}\times\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{\left(1+x\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{1+x}{\sqrt{x}}\)

Bình luận (0)
TN
Xem chi tiết
VT
Xem chi tiết
NT
19 tháng 12 2021 lúc 19:33

a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Bình luận (1)
NL
Xem chi tiết
H24
6 tháng 9 2019 lúc 18:34

a) \(\sqrt{x}\)\(\sqrt{2x-1}\)

x < 2x - 1

x - 2x < -1

-x < -1

x > 1

b) \(\sqrt{x}\le\sqrt{x+1}\)

< x + 1

< 1

không có x tm

Bình luận (0)
WV
Xem chi tiết
NT
28 tháng 8 2022 lúc 21:46

a: \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-x-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{x+8}{\sqrt{x}+1}\)

b:Đề sai rồi bạn

Vì 14-6 căn 15<0 nên x này vô nghĩa nha bạn

Bình luận (0)
LT
Xem chi tiết
NL
23 tháng 1 2024 lúc 20:36

Em ghi đề bằng latex đi, thế này ko dịch ra được

Bình luận (0)