\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}-\sqrt{3}}=\sqrt{2}+1\)
C/m hằng đẳng thức trên
Chứng minh các hằng đẳng thức sau:
a) \(y\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24+\sqrt{12}+\sqrt{8}}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh các hằng đẳng thức:
a) \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
Chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1\)
chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1}\)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3+2+1+\sqrt{2^2.2.3}+\sqrt{2^2.3}+\sqrt{2^2.2}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2+1^2+2\sqrt{3}.\sqrt{2}+2\sqrt{3}.1+2\sqrt{2}.1}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}\)
(áp dụng hằng đẳng thức (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc)
\(=\sqrt{3}+\sqrt{2}+1\)
Chứng minh đẳng thức:
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(4\sqrt{\frac{1}{2}}+12\right)=-14\sqrt{2}\)
bài 1 rút gọn biểu thức sau:
a)\(\sqrt{16+6\sqrt{7}}\)- \(\sqrt{8-2\sqrt{7}}\) b)K=\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c)\(\sqrt{60-24\sqrt{6}}\)+\(\sqrt{40-16\sqrt{6}}\) d)B=(3+\(\sqrt{3}\))\(\sqrt{12-6\sqrt{13}}\)
e)\(\sqrt{6-4\sqrt{2}}\)-\(\sqrt{\left(\sqrt{2}-\sqrt{6}\right)^2}\)
bài 2 cho biểu thức A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{x}+3}{x+9}\)( với x≥0 và x≠ 9)
a) rút gọn biểu thức A
b) tính giá trị biểu thức\(x=4+2\sqrt{3}\)
\(1,\\ a,=\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}=3+\sqrt{7}-\sqrt{7}+1=4\\ b,K=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\ c,=\sqrt{\left(6-2\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-4\right)^2}=6-2\sqrt{6}+2\sqrt{6}-4=2\\ e,=\sqrt{\left(2-\sqrt{2}\right)^2}-\left(\sqrt{6}-\sqrt{2}\right)=2-\sqrt{2}-\sqrt{6}+\sqrt{2}=2-\sqrt{6}\)
\(2,\\ a,A=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{x+9}\\ A=\dfrac{x+9}{\left(\sqrt{x}-3\right)\left(x+9\right)}=\dfrac{1}{\sqrt{x}-3}\\ b,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\\ \Leftrightarrow A=\dfrac{1}{\sqrt{3}+1-3}=\dfrac{1}{\sqrt{3}+2}=2-\sqrt{3}\)
C/m các đẳng thức sau:
a) \(\sqrt{21-6\sqrt{6}}\) + \(\sqrt{9+2\sqrt{18}}\) - \(2\sqrt{6+3\sqrt{3}}\) = 0
b) \(\dfrac{1}{\sqrt{25}+\sqrt{24}}\) + \(\dfrac{1}{\sqrt{24}+\sqrt{23}}\) \(\dfrac{1}{\sqrt{23}+\sqrt{22}}\) +...+ \(\dfrac{1}{\sqrt{2}+\sqrt{1}}\) = 4
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\) = \(\sqrt{2}\) - 1
Mn giúp mk với !!!
Câu b nhé:
Ta có:
\(\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+\dfrac{1}{\sqrt{23}+\sqrt{22}}+...+\dfrac{1}{\sqrt{2}+\sqrt{1}}\\ =\dfrac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\dfrac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}\\ =\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\\ =5-1=4\left(đpcm\right)\)
a) \(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=0\) (*)
\(\Leftrightarrow\left(3\sqrt{2}-\sqrt{3}\right)+\left(\sqrt{3}+\sqrt{6}\right)-\left(3+\sqrt{3}\right)\cdot\sqrt{2}=0\)
\(\Leftrightarrow0=0\) (luôn đúng)
Vậy (*) luôn đúng
Cho mình hỏi cách tách x và y thành hằng đẳng thức một cách hiệu quả nhất với
vd: \(\sqrt{19-8\sqrt{3}}=\sqrt{16-8\sqrt{3}+3}=\sqrt{\left(4-\sqrt{3}\right)^2}\)
Em kéo xuống trang 40, mục số 3:
Một số mẹo nhỏ với Casio.pdf - Google Drive